
Generating Light Estimation for Mixed-reality Devices

through

Collaborative Visual Sensing

by

Siddhant Prakash

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2018 by the
Graduate Supervisory Committee:

Robert LiKamWa, Co-Chair
Yezhou Yang, Co-Chair

Dianne Hansford

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Mixed reality mobile platforms co-locate virtual objects with physical spaces, cre-

ating immersive user experiences. To create visual harmony between virtual and

physical spaces, the virtual scene must be accurately illuminated with realistic phys-

ical lighting. To this end, a system was designed that Generates Light Estimation

Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a

physical scene in all directions. GLEAM optionally operate across multiple mobile

mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved

estimation. The system implements policies that prioritize resolution, coverage, or

update interval of the illumination estimation depending on the situational needs of

the virtual scene and physical environment.

To evaluate the runtime performance and perceptual e�cacy of the system, GLEAM

was implemented on the Unity 3D Game Engine. The implementation was deployed

on Android and iOS devices. On these implementations, GLEAM can prioritize dy-

namic estimation with update intervals as low as 15 ms or prioritize high spatial

quality with update intervals of 200 ms. User studies across 99 participants and 26

scene comparisons reported a preference towards GLEAM over other lighting tech-

niques in 66.67% of the presented augmented scenes and indi↵erence in 12.57% of

the scenes. A controlled lighting user study on 18 participants revealed a general

preference for policies that strike a balance between resolution and update rate.

i

To my parents and sister

ii

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Robert LiKamWa of the School

of Electrical, Computer and Energy Engineering and the School of Arts, Media and

Engineering at Arizona State University. Prof. LiKamWa’s constant support and

presence during these last two years helped me get past every hurdle I faced or had

a question about my research, writing, or presentation. He consistently guided me

in the right direction making sure I take ownership of this work and checking me

whenever he thought it was necessary.

I would like to thank Dr. Yezhou Yang and Dr. Dianne Hansford of the School of

Computing, Informatics and Decision Systems Engineering at Arizona State Univer-

sity who were always there to give their valuable insights on this thesis. They have

been present throughout my master’s journey and this thesis could not have shaped

as successfully as it did without their continuous encouragement.

I would also like to acknowledge Dr. Pavan Turaga and Dr. Suren Jayasuria as

the external guide of this thesis, and I am gratefully indebted to them for their very

valuable inputs during the early stages of the project.

Finally, I must express my very profound gratitude to my parents and to my sister

for providing me with unfailing support and continuous encouragement throughout

my years of study. Having a lab filled with colleagues like Venky, Ali, Megumi, Jinhan,

Sridhar, Alex, Linda, and Vasudha made me look forward to work every single day.

Thanks to Garvit, Arjun, Pradhuman, and Kunal for being my brothers away from

home and making my life at ASU fun and enjoyable. The thesis would be incomplete

without mentioning Juhi for always being there for me through thick and thin. This

accomplishment would not have been possible without them. Thank you!

Siddhant Prakash

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Illumination estimation models . 5

2.2 Related work . 7

2.2.1 Measuring and estimating lighting . 7

2.2.2 Vision for mixed-reality . 8

3 GLEAM SYSTEM DESIGN. 9

3.1 Sampling radiance through reflective geometry . 9

3.2 Networking devices for sample transfer . 12

3.3 Composing environment maps through sample interpolation 13

4 POLICIES FOR TRADE-OFFS BETWEEN QUALITY FACTORS 15

4.1 Quality factors . 15

4.1.1 Update interval: temporal resolution . 15

4.1.2 Spatial resolution: density of samples . 17

4.1.3 Coverage: angular deviation of samples . 18

4.1.4 Freshness: age of samples . 19

4.2 Situation driven policies . 19

4.2.1 Resolution priority . 20

4.2.2 Coverage priority . 20

4.2.3 Freshness priority . 21

5 IMPLEMENTATION . 22

iv

CHAPTER Page

5.1 Unity-based Implementation . 22

5.1.1 GLEAM environment mapping. 22

5.1.2 Reflective objects and meshes . 23

5.1.3 Multi-device sample transfer . 24

5.1.4 Cubemap composition . 24

5.1.5 Multi-threading . 24

6 EVALUATION . 26

6.1 Microbenchmarks . 26

6.1.1 Computational overhead per module . 26

6.1.2 Policy implications on execution time. 28

6.2 Qualitative user studies . 30

6.2.1 Realism . 30

6.2.2 Policy trade-o↵s . 34

6.2.3 Comparative analysis with ARKit . 36

6.3 Post-evaluation analysis . 37

7 CONCLUSION . 39

REFERENCES . 42

v

LIST OF TABLES

Table Page

6.1 Policy Configurations Used for Evaluation. 29

6.2 Execution Runtimes on Nvidia Shield Tablets. 29

6.3 User Perception of ARKit 2.0 Illumination Estimation Module Vs.

GLEAM. 37

vi

LIST OF FIGURES

Figure Page

1.1 Mixed-reality Scene Consists of Virtual Object(s) (in This Case an

Elephant Model) Overlaid on a Background Camera Image. GLEAM

Estimates Lighting at the Location Where the Virtual Scene Should

Be Rendered Which Is Determined by an Image-marker (Chess Image

in This Scene). 2

2.1 The Total Radiance Coming out of a Spatial Point (x) is Described

by the Rendering Equation given an Illumination Model for Incoming

Radiance and a BRDF. 5

2.2 Cubemap Representation (Center) of Environment Maps. The Figures

on the Left and Right Show the Cubemap Wrapped as a Cube from

Two Di↵erent Viewpoints. 6

3.1 GLEAM Observes Physical Reflective Objects to Estimate Accurate

Scene Lighting. In This Figure, GLEAM Observes a Reflective Rhino

Figurine (Top). The Estimates Are Used to Realistically Illuminate a

Virtual Rhino Model (Bottom). 10

3.2 GLEAM Illumination Estimation System Comprises Three Modules:

(A) the Radiance Sampling Module Generates a Collection of Radi-

ance Samples by Observing Reflections o↵ of a Target Specular Ob-

ject; (B) the Network Transfer Module Shares Samples among Multiple

Devices in the System; (C) the Cubemap Composition Module Interpo-

lates Collected Radiance Samples to Create a Combined High Quality

Cubemap. 11

vii

Figure Page

3.3 GLEAM Computes Radiance Samples Using a Reflective Object Such

as the Specular Ball Shown in the Inset. For Each Viewpoint, GLEAM

Can Use Inverse Distance Weighting (IDW) Interpolation and Near-

est Neighbor (NN) Interpolation to Generate a Cubemap from Single

Viewpoint Interpolation. Alternatively, to Reduce the Distortions from

Single-viewpoint Capture, GLEAMCan Interpolate Samples from Both

Viewpoints Through a High Quality Multi-viewpoint Interpolation. 12

4.1 Runtime Characterization of (A) Network Transfer Module, (B) Ra-

diance Sampling Module, and, (C) Cubemap Composition Module of

Our GLEAM Implementation as a Function of Number of Samples. 16

4.2 Capturing More Samples Gives GLEAM a Wider Angular Spread of

Illumination Estimation for Composing the Environment Map. 18

5.1 Multi-threaded GLEAM Implementation. An Auxiliary Thread Keeps

the Main Thread Free for Interactive Display Frame Rates. 23

6.1 The Figure Reports Runtimes of Di↵erent Modules in Our GLEAM

Implementation on Multiple Mobile Devices. Each Bar Corresponds

to 6 Di↵erent Policy for Quality Factors Mentioned in §4.1. Run-

times Corresponding to the Three Modules: Radiance Sampling, Net-

work Transfer and Cubemap Composition Are Shown Corresponding

to Each Policy. We Observe a Reduction in Runtime as the Number of

Samples Decreases, Skipping Factor Increases, and Demand for Fresh-

ness Increases. Execution Runtimes on Nvidia Shield K1 Tablet with

Standard Deviations over 100 Runs Are Reported in Table 6.2. 27

viii

Figure Page

6.2 Di↵erent Scenes and Lighting Environments Used to Evaluate Percep-

tion of Rendering with GLEAM Estimation. (A),(B): Indoor Scenes

with Incoming Natural Daylight. (C),(D): Indoor Scenes with LED

Lights. 30

6.3 4 of the 26 Questions from the Online Survey in Which User Were

Asked to Choose the More Realistic Scene from Each Pair of Images. . . 32

6.4 Breakdown of Results of the Online User Study Showing User Per-

ception of Realism Based on the 4 Categories of Lighting Compared,

i.e. (i) GLEAM Vs. No Lighting, (ii) GLEAM Vs. Directional Light-

ing, (iii) GLEAM Vs. Ground Truth Lighting, and, (iv) GLEAM Vs.

ARKit 1.0 Lighting. 33

6.5 Environment Used for In-person User Studies. The Three Scenes Were

Illuminated with Dynamic Colored Lights And Static White Ambient

Lights. 35

6.6 Breakdown of User Study Results on Perceived Visual Fidelity and

Smoothness of Di↵erent Policies on 3 Di↵erent Scenes {Chess Scene,

Kitchen Scene, Exhibit Scene} under 3 Di↵erent Lighting Conditions

{Static Directional, Dynamic Directional, and Static Ambient + Dy-

namic Directional}. 36

7.1 A Typical Mixed-reality Scene with Multiple Virtual Objects Made

of Di↵erent Materials (Plastic Airplane, Marble Statue, and Metallic

Bunny) with Standard Directional Lighting Compared Against GLEAM

Estimated Lighting. The Realism Imparted to the Scene Due to Esti-

mated Lighting Is Apparent. 40

ix

Chapter 1

INTRODUCTION

Light estimation is a critical component for realistic rendering of virtual scenes.

For mixed-reality, a merging of virtual and physical worlds, accurate light estima-

tion is especially important; inaccuracies in light estimation create noticeable visual

inconsistencies in the lighting of the virtual scene and physical scene, as shown in Fig-

ure 1.1. Failure to properly render directional lighting, e.g., shadows and highlights,

is particularly noticeable to users [8, 23, 36]. Such lighting inconsistencies remove the

user from the immersive experience, whether or not the user is consciously aware of

the inaccuracy in the scene illumination.

Su�cient light estimation requires not only intensity of light, but also directional-

ity of light. Furthermore, light estimation must be updated in real-time, adjusting to

changes in the dynamic environment of a physical setting. Consequently, while light

estimation is on the forefront of the minds of mixed-reality application developers,

current approaches to light estimation have thus far been inadequate. At this time,

released Apple ARKit [3] and Google ARCore [10] implementations provide coarse

illumination estimation through ambient light sensing of average pixel values in a

scene. Meanwhile, advanced academic research solutions sample light transmissions

from the scene geometry [27, 28, 40] and use machine learning inference to estimate

directional light intensity [9, 21]. These solutions can be computationally expensive,

slow to update, and prone to inaccuracy when filling in missing information.

Thus, in this work, we take a di↵erent approach: use reflections o↵ of physical

surfaces to estimate dynamic real-time illumination from all directions. By observing

images of reflected light o↵ of geometrically-tracked hand-held controllers, headsets,

1

(a) Virtual Elephant Model with No

Lighting

(b) Virtual Elephant Model with

Standard Directional Lighting

(c) Virtual Elephant Model with

GLEAM (Our) Estimated Lighting

(d) Real Elephant Figurine with

Real Environmental Lighting

Figure 1.1: Mixed-reality Scene Consists of Virtual Object(s) (in This Case an Ele-

phant Model) Overlaid on a Background Camera Image. GLEAM Estimates Lighting

at the Location Where the Virtual Scene Should Be Rendered Which Is Determined

by an Image-marker (Chess Image in This Scene).

game pieces, or other physical objects, a mixed-reality camera system can estimate the

intensity of light associated with di↵erent angles of incoming light. A single camera

viewpoint will provide a basis of illumination estimation, but can lack information

not captured in its viewpoint. Thus, when available, multiple mixed-reality devices

can share their viewpoint-specific data to jointly improve the illumination estimation.

2

To streamline and optimize the collaborative illumination estimation, we design our

system GLEAM, which has the task of Generating Light Estimation Across Mixed-

reality devices.

The contribution of GLEAM is to bridge the gap between o✏ine techniques on

desktops/servers and real-time techniques on mobile mixed-reality systems. Through

various techniques, our GLEAM design prioritizes computational e�ciency and real-

time update. We describe various policies to allow application developers and/or users

to utilize trade-o↵s between illumination resolution, coverage, and update interval.

Our design and implementation of GLEAM use the Unity Game Engine for porta-

bility across smartphones, tablets, and headsets. These devices can use GLEAM ei-

ther as singular mixed-reality devices for single viewpoint illumination estimation or

as networked mixed-reality devices for collaborative illumination estimation. Notably,

GLEAM can theoretically work in tandem with existing light estimation techniques,

providing continuous computationally inexpensive updates in real-time where oth-

ers can provide additional high-fidelity illumination estimation through inference on

scene geometry.

The e↵ectiveness of GLEAM in generating realistic illumination is highlighted

through our user study which showed an overwhelming preference (66.67%) towards

GLEAM’s estimates. GLEAM performed well in most of the scenes with users mark-

ing GLEAM illuminated scenes as more realistic. Even for scenes which were il-

luminated with directional light placed roughly near the actual physical light, the

participants show confusion highlighting the level of realism achieved using GLEAM

for estimating illumination.

In this thesis, Chapter 2 covers the background and related work of illumination

estimation. Chapter 3 covers an overview of our GLEAM design. Chapter 4 describes

policies for trade-o↵s between quality, density, and update interval. Chapter 5 de-

3

scribes our Unity-based multi-threaded implementation. Chapter 6 covers our system

evaluation and user studies. In Chapter 7, we discuss future avenues of research and

conclude our work in Chapter 8.

4

Chapter 2

BACKGROUND

2.1 Illumination estimation models

In computer graphics, rendering generates an image of a virtual scene captured

from the perspective of a virtual camera. The image is formed when a ray of light

originating at a light source irradiates the object and reflects back into the camera.

The incoming radiance L at a spatial location x as observed from a direction ! is

computed by solving the rendering equation [14]

L(x,!) =

Z

⌦

f

r

(x,!
i

,!)L
in

(x,!
i

)cos✓
i

@!

i

(2.1)

where ⌦ defines the upper hemisphere oriented around the surface normal at x,

!

i

is the incoming radiance direction, f
r

is the bi-directional reflectance distribution

function (BRDF), and ✓

i

is the angle between surface normal at x and !

i

, as shown in

Figure 2.1. All modern rendering engines [7, 24, 31, 35, 37] are capable of rendering

ωiω

x

Ω
Light SourceDevice Camera

Figure 2.1: The Total Radiance Coming out of a Spatial Point (x) is Described by

the Rendering Equation given an Illumination Model for Incoming Radiance and a

BRDF.

5

Figure 2.2: Cubemap Representation (Center) of Environment Maps. The Figures

on the Left and Right Show the Cubemap Wrapped as a Cube from Two Di↵erent

Viewpoints.

scenes from the BRDF of objects and an illumination model. Thus, we need to

estimate the illumination model of incoming radiance L

in

(x,!
i

) to render an object

at x.

Illumination models are often formulated under the “distant scene assumption”: the

intensity of incoming ray depends on the direction of incidence only. Thus, modeling

illumination boils down to mapping directions in the 3D space to ray intensity. Under

the distant scene assumption, illumination models are usually represented in the form

of environment maps, especially in Image-based Lighting [4]. Such environment maps

consist of mapping of incoming ray intensity to ray direction, representing L

in

(!
i

).

One of the most commonly used representations for environment maps is a “cubic

environment map” or “cubemap”, as shown in Figure 2.2. Each spatial location on

a cubemap face maps to a discrete direction. Thus, mapping directions as the vector

between the center of a unit cube and cubemap pixels, a cubemap is able to store

intensities spanning the entire 3D space.

Specular materials reflect most of the light incident on the surface. Thus, to main-

tain details, environment maps should have reasonably high resolution. Although, it

6

has been established that most scenes do not need high resolution in environment

maps for believable illumination, as in [26], having high resolution maps is necessary

for specular objects, including liquids and mirror-like surfaces.

2.2 Related work

Illumination estimation is an extensively well-studied computer graphics problem.

Here, we discuss various facets of illumination estimation.

2.2.1 Measuring and estimating lighting

Measured lighting captures accurate illumination, generally using physical reflec-

tion probes. Image-based lighting, introduced in [4, 5], uses reflection probes to gen-

erate High-Dynamic Range (HDR) environment maps. Further exploration through

temporal image-based lighting [11, 13, 33] led to HDR or RGBD (RGB + Depth)

videos of reflection probes being captured and used for illumination estimation over

time. Sparse [1, 29] as well as dense [32, 34] sampling were employed through a com-

bination of custom light probe devices and capture techniques to improve estimation

for di↵erent situations. This thesis is inspired by these works; we introduce reflec-

tive objects for radiance sampling in our system design because of its e↵ectiveness in

capturing environmental illumination.

In estimated lighting, the goal is to measure lighting without the use of an ex-

plicit light probe device. Various works use image features to regress an illumination

model [12, 18, 22]. Others have exploited human perception to approximate illu-

mination [9, 15, 16, 17], which is not always accurate to the physical environment.

Estimating illumination for outdoor scenes with perceptual or implicit methods can

give very wrong results. To improve outdoor illumination estimation, explicit methods

have been developed by [19, 20, 39]. We study their method of evaluating perceptual

7

illumination, especially in the design of our user studies.

2.2.2 Vision for mixed-reality

Advances in vision tasks, such as structure-from motion (SfM), depth and pose

estimation on mobile devices have led to the development of systems that exploits

these to estimate lighting for real-time mixed-reality. Fish-eye cameras can model

illumination from multiple-viewpoints and o✏oads computation to a PC server for

estimating illumination [28]. Removing the need for fish-eye cameras, commercial

RGB-D Kinect sensors can estimate illumination from 3D reconstruction of everyday

objects [27]. Advancing these works for dynamic estimation, GLEAM is designed for

commercial mobile devices and uses marker-based pose estimation to surpass need

for 3D reconstruction methods.

Recent commercial interest in mobile mixed-reality devices are fueling the progress

of mobile mixed-reality. For augmented reality illumination estimation Google Inc.

has introduced the ARCore library [10] and Apple Inc. has released ARKit library [3].

Both ARCore and ARKit provide light adaptation to the scene lighting. However, the

light adaptation is coarse, scaling pixel intensities with the average intensity of the

scene. The beta for ARKit 2.0 includes real-time illumination estimation from camera

inference. We compare GLEAM against these commercial products and report the

comparison in the evaluation section (§6.2).

8

Chapter 3

GLEAM SYSTEM DESIGN

As mentioned in §2.1, su�cient rendering needs an environment map of illumi-

nation that represents the intensity of incoming light rays towards the scene. We

design the GLEAM system to sample and interpolate points in the environment map

by visually observing reflective objects across multiple mobile devices to model accu-

rate scene illumination. The end result is a rich environment map that dynamically

updates to continually reflect changes in the physical environment and scene objects.

The GLEAM system, illustrated in Figure 3.2, estimates illumination through

the integration of multiple operations, including modules to: (i) sample illumination

through reflective geometry, (ii) network devices for multi-viewpoint sample transfer,

and (iii) generate environment maps through interpolation. GLEAM performs these

operations on incoming camera frames to dynamically update the environment map.

This section describes these components in further detail.

3.1 Sampling radiance through reflective geometry

Environment maps associate illumination radiance intensities and colors to the

angular directions of the incoming light towards the scene. Captured images of spec-

ular objects with known spatial surface meshes can geometrically reveal such radiance

information as the object surfaces reflect light into the camera. Thus, to capture radi-

ance samples for an environment map, we use augmented reality positioning markers

to spatially position specular objects in a physical scene. Figure 3.1 shows the use of

a reflective rhino as a target specular object. The GLEAM system visually inspects

images of these specular objects to compute illumination samples through reflective

9

Figure 3.1: GLEAMObserves Physical Reflective Objects to Estimate Accurate Scene

Lighting. In This Figure, GLEAM Observes a Reflective Rhino Figurine (Top). The

Estimates Are Used to Realistically Illuminate a Virtual Rhino Model (Bottom).

geometry.

Specular reflection follows a strict geometric pattern: the angle of the reflected

ray from a surface normal ✓
out

matches the angle of the incident ray from the surface

normal ✓
in

. As illustrated in Figure 3.2a, GLEAM leverages this principle to estimate

radiance samples using the following process:

1. Project a virtual ray from the pixel along its camera ray into the virtual scene.

2. Determine if and where a collision occurs between the ray and a specular surface

in the virtual scene.

3. Reflect the ray over the specular surface normal to generate an incoming ray

vector.

4. Associate the camera pixel color with the angle of the incoming ray into the

10

2D Image

Light Source

Target Specular Object

Device Camera

Sample
List Combined Cubemap

(a) Radiance Sampling (b) Network Transfer (c) Cubemap Composition

1

2

2

3
1

3

1 2 3
θin θout

IDW
+

NN

Figure 3.2: GLEAM Illumination Estimation System Comprises Three Modules: (A)

the Radiance Sampling Module Generates a Collection of Radiance Samples by Ob-

serving Reflections o↵ of a Target Specular Object; (B) the Network Transfer Module

Shares Samples among Multiple Devices in the System; (C) the Cubemap Compo-

sition Module Interpolates Collected Radiance Samples to Create a Combined High

Quality Cubemap.

scene. This association becomes a radiance sample.

By performing this sequence of computations on each pixel in the scene, GLEAM

captures a set of radiance samples with every camera frame.

As GLEAM’s technique relies on reflective geometry, the shape of the specular

object carries implications on the success of the technique. Concave surfaces – such

as the neck and horns of the rhino – present di�culties due to their inter-reflections;

camera rays reflect back into the object instead of into the environment. To mitigate

this concern, concave surfaces can be removed from the virtual mesh of potential

specular collisions. On the other hand, round convex surfaces work well with the

reflective geometry, as they provide a variety of surface normals that GLEAM can use

to generate samples for a broad set of illumination angles. For these reasons, metallic

spheres work well as the target specular object. However, as we show through our

implementation and evaluation, GLEAM works with multiple object shapes with and

without concavities and round surfaces.

11

Radiance Sampling Single Viewpoint Interpolation

Multi-viewpoint Interpolation

V
ie

w
po

in
t 1

V
ie

w
po

in
t 2

IDW
+

NN

IDW
+

NN

IDW
+

NN

Figure 3.3: GLEAM Computes Radiance Samples Using a Reflective Object Such as

the Specular Ball Shown in the Inset. For Each Viewpoint, GLEAM Can Use Inverse

Distance Weighting (IDW) Interpolation and Nearest Neighbor (NN) Interpolation to

Generate a Cubemap from Single Viewpoint Interpolation. Alternatively, to Reduce

the Distortions from Single-viewpoint Capture, GLEAM Can Interpolate Samples

from Both Viewpoints Through a High Quality Multi-viewpoint Interpolation.

3.2 Networking devices for sample transfer

Radiance samples generated from a single viewpoint will only cover partial regions

of the environment map. For full coverage, samples from multiple viewpoints can

contribute to jointly populate the environment map. GLEAM uses a local network

to share illumination information among multiple mobile devices, as illustrated in

Figure 3.2b. Together, these mobile devices form a distributed multi-viewpoint system

for radiance sample collection and distribution.

The requirements for networking are simple: upon sample generation, a GLEAM

device will transmit sets of samples to all other GLEAM devices that observe the

same target. Local multiplayer game engines typically adopt a client-server model,

using the server to synchronize information among multiple clients. To remove the

need for a dedicated server, the server behavior is often hosted on one of the client

applications, which becomes a multiplayer “host”. This and other standard network-

12

ing architectures satisfy the needs for transferring radiance samples among GLEAM

devices.

Transferring GLEAM samples is constrained by network bandwidth. This can be

mitigated by sending fewer samples over the network. We discuss various policies to

reduce network overhead in §4.

3.3 Composing environment maps through sample interpolation

The generated and received radiance samples form a sparse estimation of illu-

mination. To create a usable environment map, GLEAM spatially interpolates the

samples into the environment map space, as illustrated in Figure 3.2c. While choosing

interpolation algorithms, we need to consider not only the quality of interpolation,

but also the computational overhead. This is especially important because the envi-

ronment map updates on every newly processed list of samples, repeatedly incurring

the interpolation overhead.

Environment maps typically use cubemap texture formats for omnidirectional

representation. Cubemaps are composed of six faces – representing six faces of a

cube – each a grid of “texels”. Each texel represents the intensity corresponding to

an angle of incoming light.

To fill the cubemap, GLEAM uses a combination of inverse distance weighting

(IDW) interpolation [30] and nearest neighbor (NN) interpolation [2]. IDW inter-

polation operates on each texel, computing a weighted average of nearby samples,

each sample weighted by its distance from the texel. We find the interpolated sample

intensity u of texel x, from nearby samples u

i

= u(x
i

) for i = 1, 2, ...N where N is

the total number of neighborhood samples for texel x, using the IDW function given

by,

13

u(x) =

8
>><

>>:

PN
i=1 wi(x)uiPN
i=1 wi(x)

, if d(x,x
i

) 6= 0 for all i; w

i

(x) = 1
d(x,xi)

u

i

, if d(x,x
i

) = 0 for some i

For low-complexity, we use Manhattan Distance as our weighting function given

by,

d(x,x
i

) = ||x� x

i

||1 =
nX

j=1

|x

j

� x

i

j

|

To computationally perform IDW interpolation, we iterate over our list of samples,

adding each sample’s weighted intensity value and distance weight to all cubemap tex-

els within a neighborhood radius. We then iterate over the cubemap texels, dividing

the sum of weighted pixel values by the sum of distance weights to generate the inter-

polated texels. Larger IDW neighborhood radius parameters allow IDW to fill greater

portions of the cubemap, but come at the expense of computational time.

IDW will leave cubemap gaps in texels that do not occupy any sample neighbor-

hoods, especially with smaller IDW radiuses. To fill the remaining gaps (texels having

no value), we use a nearest neighbor algorithm to assign missing cubemap texels to

the values of their nearest assigned neighbors.

IDW and nearest neighbor are two of many interpolation mechanisms that can

satisfy the needs for cubemap interpolation. Other strategies, e.g., structural inpaint-

ing, hole filling algorithms, or neural network-based methods, are also viable solutions,

with potentially higher quality at the expense of computational complexity. To pri-

oritize for reduced computational complexity, we leave the full exploration of such

algorithms as a future research avenue. By interpolating radiance samples into a full

cubemap on a per-frame basis, the GLEAM system provides a dynamically updating

environment map for the renderer to use to illuminate a scene. We demonstrate the

combined working principles of the GLEAM system in Figure 3.3.

14

Chapter 4

POLICIES FOR TRADE-OFFS BETWEEN QUALITY FACTORS

GLEAM environment maps provide dynamic illumination estimation for aug-

mented reality rendering. However, the quality of the rendering relies on the nature

of the generated environment maps, especially with regard to the update interval,

resolution, sample coverage, and dynamic freshness of the estimated illumination, as

defined in §4.1.

Ensuring these aspects of quality is constrained by system limitations in compu-

tational and networking resources. Built on an understanding of these overheads,

we provide tradeo↵ policies in §4.2 that allow developers using GLEAM to dynami-

cally prioritize various aspects of quality, based on the needs befitting their specific

augmented scenes.

4.1 Quality factors

4.1.1 Update interval: temporal resolution

To model a dynamic scene with changing illumination, GLEAM will periodically

refresh its illumination estimation after an update interval. With smaller update

intervals, dynamic changes in scene lighting will be reflected in the virtual scene,

creating visual harmony between the physical and virtual scene. However, the update

interval of the cubemap is limited by the bandwidth of the network channel and the

computational runtime of the system.

With a fixed network bandwidth B, the update interval U is limited by the amount

15

(a) Time Taken to Transfer Samples

Shows Linear Increase with Number of

Samples at Constant Bandwidth.

(b) Sampling Radiance Takes More Time

with Increase in Number of Samples Gen-

erated Due to Iterative Ray Casting.

(c) Cubemap Composition Shows a Dip

in This Linear Trend for Larger Number

of Samples Because of Reduced Load.

Figure 4.1: Runtime Characterization of (A) Network Transfer Module, (B) Radi-

ance Sampling Module, and, (C) Cubemap Composition Module of Our GLEAM

Implementation as a Function of Number of Samples.

16

of data transferred per update interval S
network

:

S

network

/U  B

Thus, to maintain a low update interval, GLEAM must limit the number of radiance

samples being transferred among devices, which can be observed from Figure 4.1a.

Similarly, the update interval must be larger than the per-frame computational

runtime of the GLEAM system. GLEAM must limit the number of radiance sam-

ples being generated and being used to compose an illumination map, as shown in

Figure 4.1b, 4.1c. As seen in the figure, the network transfer overhead outweighs com-

putational overhead by an order of magnitude, and is thus the bottleneck to rapid

update intervals.

We further explore the e↵ect that decreasing the number of samples has on the

environment map quality through three other factors, i.e. resolution, coverage and

freshness, in order to maintain interactive updates.

4.1.2 Spatial resolution: density of samples

A high resolution environment map, i.e., a cubemap with dense faces of texels,

a↵ords the ability to represent illumination details, resulting in high fidelity render-

ing of highlights and shadows from the environment. However, simply increasing a

cubemap’s resolution will not automatically improve the quality of the cubemap; a

high resolution cubemap needs a dense collection of radiance information detail to

populate the cubemap.

GLEAM populates cubemap texels with interpolated combinations of nearby sam-

ples. Naturally, a sparse sampling will yield averaged values, whereas a dense sampling

will yield a more precise interpolation, due to smaller distances from texels to radiance

samples. The need for sampling is exacerbated for high resolution cubemaps, as a

17

Figure 4.2: Capturing More Samples Gives GLEAM a Wider Angular Spread of

Illumination Estimation for Composing the Environment Map.

poor sampling density will result in each radiance sample contributing to large neigh-

borhoods of texels. Thus, raising the resolution of the environment map demands a

high density of radiance sampling to more accurately populate each cubemap texel.

4.1.3 Coverage: angular deviation of samples

Successful environment maps represent incoming illumination from all directions,

allowing graphics engines to render reflections of environmental light o↵ of various

virtual material surfaces. Therefore, sample coverage is an important quality as-

pect; environment maps should embody information from a wide angular deviation

of radiance samples.

We can measure the amount of coverage of samples by calculating their angular

deviation from the viewpoint of device. We characterize the number of samples gen-

erated with their angular deviation in a single Full HD capture of a specular sphere

18

in Figure 4.2. Through sample transfers over a network, multiple viewpoints can con-

tribute their coverage of samples to construct an environment map with reasonably

high coverage. In the absence of multiple devices, and/or for any remaining gaps in

coverage, environment map interpolation will fill in the holes with averaged neigh-

boring sample data. However, this is subject to inaccuracy, especially for wide gaps

in coverage.

4.1.4 Freshness: age of samples

GLEAM continually updates the environment map with newly captured samples

and samples received over the network. Retaining and accumulating samples over

time can help GLEAM raise the resolution and coverage of the environment map as

devices move around to capture di↵erent spatial perspectives of the object. However,

samples should not be indefinitely retained; the relevancy of the sample may degrade

with time as an environment’s lighting and objects dynamically change.

Many natural situations can cause dynamic environmental changes; a light may

turn o↵, a passerby may cast a shadow, or a nearby placed object may introduce

colored reflections o↵ of its surface. By retaining samples that took place before these

dynamic changes, the environment map may falsely incorporate stale illumination

information. Thus, the age of the radiance sample is an important measure of the

freshness of the environment map.

4.2 Situation driven policies

Di↵erent lighting conditions as well as environmental changes over time may re-

quire optimization for di↵erent factors. Based on the scene composition, number of

participants in the system, and network bandwidth, GLEAM can be optimized to

achieve di↵erent policies. We define three criteria: (i) number of samples per map,

19

(ii) pixel skip factor, and (iii) sample expiration period, to define and evaluate three

policies that prioritize resolution, coverage, and freshness.

4.2.1 Resolution priority

GLEAM can be configured to optimize for maximum cubemap resolution for high

sample density. Optimizing for high resolution provides us with a high quality en-

vironment map. High quality environment maps are suitable for scenes that exhibit

complex lighting phenomena. For example, the simulation of liquids requires high

quality environment maps to accurately model light interactions with the liquid sur-

face.

To achieve this policy, we use all possible generated radiance samples to compose

an environment map. Furthermore, we allow samples to persist over time, allowing

sample age to increase.

However, as the raised number of samples increases computational overhead, a

maximum resolution policy sacrifices update interval, creating environment maps that

are slow to update. This can be mitigated by reducing the age of samples to create

reasonable updates.

4.2.2 Coverage priority

Having a full coverage is desired in almost all situations, fully capturing the illumi-

nation in the environment. Using collaborative sensing, GLEAM can obtain greater

coverage of the scene from most angles. However, constrained by the network band-

width, there is a limit on the number of samples that can be transferred in a given

update interval. Thus, GLEAM must discard samples prior to transmission to allow

for complete coverage of the scene.

Samples of early indices are concentrated in the center of the viewpoint, reaching

20

wider angular deviation with higher-indexed samples. To allow a fixed number of

samples to cover a greater spread of angles, we subsample our list, e.g., skipping

every other sample, to allow larger angular deviations.

Notably, using this policy, if the number of devices in the system increases, the

number of samples required to transfer decreases along with increase in coverage.

This reduces the network burden, allowing faster updates.

4.2.3 Freshness priority

GLEAM is also designed to model dynamic scene lighting in mixed-reality. Some

dynamic environments may call for rapid updates to illumination conditions, e.g., an

AR museum showing a 3D model exhibit with constant movement of people around

the exhibit. GLEAM can achieve this freshness of illumination by purging samples

above a certain age threshold.

When purging old samples, GLEAM reduces the number of samples that are used

to compose its cubemap, retaining only the most recent samples. In addition to

keeping the illumination estimation fresh, this promotes reduced update intervals.

Unfortunately, this policy sacrifices cubemap resolution and coverage.

21

Chapter 5

IMPLEMENTATION

5.1 Unity-based Implementation

We develop software through the Unity 3D game engine [35] and PTC Vuforia

[6] to provide the graphics rendering and augmented reality tracking infrastructure

for our GLEAM implementation. Unity supports cross-platform deployment, which

allows us to harness the versatile design of GLEAM for Android, iOS, macOS, and

Windows deployments. As of this writing, GLEAM has been designed and tested on

Nvidia Shield K1 Tablet, iPhoneX, iPad 10.5 inch, Samsung Galaxy S8, OnePlus 3T,

Macbook Pros, and Windows 10 computers.

5.1.1 GLEAM environment mapping

In our implementation, GLEAM uses Vuforia SDK’s marker-based pose estimation

to track reflective objects. Vuforia, in addition to generating pose estimates, also

provides the camera frame that is used to obtain the correspondences between the

camera and an image marker. When generating radiance samples, we extract the

pixel intensities of the reflective objects from this frame.

GLEAM represents environment maps as Unity’s Cubemap objects. Cubemap ob-

jects in Unity are Texture2D objects indexed using a CubemapFace value and two

floating-point values for spatial location on each cubemap face. The intensity of each

sample in the Cubemap is stored as Unity’s Color32 object, which stores the red, blue,

green and alpha channel intensities as a byte value within the range of 0-255. The

color and intensity of the corresponding pixel obtained from the camera frame is used

22

OnFrame()

N

Y Y

return
if

cubemap
ready

if first
frame

Filter Samples
by Policy

Send/Receive Samples

Compose Cubemap

Purge Samples
for Freshness

return

N

Main Thread Auxilary Thread

Launch Auxilary Thread

Generate Samples

Apply Cubemap

return

Figure 5.1: Multi-threaded GLEAM Implementation. An Auxiliary Thread Keeps

the Main Thread Free for Interactive Display Frame Rates.

as the intensity of the radiance sample generated. To store the direction, samples

store a single CubemapFace value and two spatial floating-point values, which are

directly used as Cubemap indices.

5.1.2 Reflective objects and meshes

To generate samples, GLEAM uses a reflective object placed at a known spatial

location with respect to an image marker. A 3D mesh of the reflective object is placed

at the same location with respect to the marker in the Unity scene. Currently, this

requires calibration to align the 3D mesh with the real object. Tracking reflective

objects is an active research challenge [25, 38], which falls outside the scope of our

work.

23

5.1.3 Multi-device sample transfer

GLEAM uses Unity’s UNet High Level API to transfer samples between devices.

Using this API, GLEAM spawns a new GameObject corresponding to a new device

when it joins the network. This GameObject holds a locally created sample list

along with a collection of sample lists from other devices in the system. Each device

generates a new sample list from an input frame and broadcasts it to all other devices

in the network. Using this implementation, GLEAM is able to hold multiple lists

locally, from which it can select samples to compose the cubemap. Thus, only one

sample list needs to be transferred at a given time, reducing network cost.

5.1.4 Cubemap composition

After the transfer of samples is complete, GLEAM uses collected sample lists to

compose an environment map. All samples which are to be used in the environment

map are composed into a Unity Cubemap object. GLEAM uses a Unity material which

has a “skybox shader” as the environment map to light the scene. By setting the

main texture of the material to the cubemap, GLEAM achieves realistic lighting in

every frame.

5.1.5 Multi-threading

To achieve interactive display frame rates and smooth cubemap updates, we em-

ploy multi-threading, as shown in Figure 5.1. Unity’s main thread includes operations

to compute the game state and render frames to the screen. Thus, to preserve fast

frame rates, we aim to minimize operations performed on the main thread. Sam-

ple generation requires main thread operation to perform game physics raycasting.

Cubemap application requires main thread operation to influence rendering opera-

24

tions. All other GLEAM operations, e.g., sample network transfer, environment map

composition, are performed on an auxiliary thread so as not to block the main thread

during operation. As we later show in our microbenchmarking, this su�ciently allows

frame rates, limited only by the overhead of Vuforia tracking.

25

Chapter 6

EVALUATION

In this section, we evaluate our overall system on generating realistic illumination

estimates for scenes targeted towards AR use-cases. §6.1 characterizes the runtime

of GLEAM operations. Then, in §6.2, we perform qualitative analysis via multiple

user studies that aim to answer the question, “If we render an augmented scene with

our illumination estimates, how realistic do virtual objects look?” Since our system

is targeted for AR use-cases, our evaluations are done on static as well as dynamic

scene lighting.

6.1 Microbenchmarks

We execute microbenchmarks for di↵erent modules in our GLEAM implementa-

tion and observe how di↵erent policy decisions a↵ect the individual runtime of each

module and the overall computational runtime of the system. To analyze the perfor-

mance implications of various trade-o↵s, we design six di↵erent policies with di↵erent

combinations of quality factors, as reported in Table 6.1. We perform our compar-

ative analysis of these policies on an Nvidia Shield K1 Tablet, a Samsung Galaxy

S8, and an iOS iPad Pro 10.5” 2017 (A1709), shown in Figure 6.1. We report the

execution runtimes of modules using Nvidia Shield K1 Tablet in Table 6.2.

6.1.1 Computational overhead per module

The computational overhead of the cubemap composition module dominates the

overall execution time, consuming more than 82% of GLEAM’s execution time across

all devices and policies. This is primarily due to the iterative computational expense

26

(a) Nvidia Shield (Android N) (b) Samsung Galaxy S8 (Android O)

(c) iPad 10.5 inch (iOS 12.0)

Figure 6.1: The Figure Reports Runtimes of Di↵erent Modules in Our GLEAM Im-

plementation on Multiple Mobile Devices. Each Bar Corresponds to 6 Di↵erent Policy

for Quality Factors Mentioned in §4.1. Runtimes Corresponding to the Three Mod-

ules: Radiance Sampling, Network Transfer and Cubemap Composition Are Shown

Corresponding to Each Policy. We Observe a Reduction in Runtime as the Number of

Samples Decreases, Skipping Factor Increases, and Demand for Freshness Increases.

Execution Runtimes on Nvidia Shield K1 Tablet with Standard Deviations over 100

Runs Are Reported in Table 6.2.

27

of interpolation across cubemap texels.

Meanwhile, the computational overhead of the radiance sampling module only

consumes up to 16.9% of GLEAM’s execution time. Radiance sampling only requires

a constant set of geometric operations for each image pixel destined to be a radiance

sample.

The execution time of the network transfer module is negligible. The Unity engine

handles network transmissions on a separate non-blocking thread, allowing minimal

execution overhead. However, while it does not block execution, the transfer itself is

not instantaneous, taking 0.25 ms per sample, as discussed in §4.1.1.

6.1.2 Policy implications on execution time

The execution time of the radiance sampling module and cubemap composition

module are both related to the number of samples, as shown in §4.1. We see the

e↵ect of this implication on the execution time of the di↵erent modules and the

overall execution time.

Policies that prioritize resolution increase execution time, due to the increased

number of samples. Meanwhile, policies that prioritize coverage allow faster sampling

intervals by decreasing the number of samples. To fully minimize update interval, the

policies that prioritize freshness retain very few samples, further reducing execution

time. This noticeably reduces the overhead of cubemap composition, allowing for

rapid update cycles. For each policy, we assign conservative update intervals to relieve

the relative computational burden of GLEAM for smooth application execution. We

study the experiential e↵ect of these policies on user perception in §6.2.2.

28

Table 6.1: Policy Configurations Used for Evaluation.

#Samples Skipping Age Update

Policy per List factor (ms) Int. (ms)

1: Resolution Priority 4000 0 pixel 1000 1000

2: Resolution Priority 2000 0 pixel 1000 500

3: Coverage Priority 4000 1 pixel 500 1000

4: Coverage Priority 800 2 pixels 500 200

5: Freshness Priority 800 0 pixel 25 200

6: Freshness Priority 400 1 pixel 25 100

Table 6.2: Execution Runtimes on Nvidia Shield Tablets.

Radiance Network Cubemap

Policy Sampling (ms) Transfer (ms) Composition (ms)

1: Resolution Priority 28.71± 2.86 1.31± 0.91 127.86± 36.66

2: Resolution Priority 17.05± 2.37 1.29± 0.82 115.2± 18.64

3: Coverage Priority 28.6± 2.49 1.26± 0.84 52.22± 4.86

4: Coverage Priority 7.04± 1.46 0.77± 0.83 40.12± 8.07

5: Freshness Priority 7.03± 1.48 0.66± 0.59 23.29± 1.70

6: Freshness Priority 3.99± 1.39 0.58± 0.69 13.77± 1.65

29

(a) Chemistry Lab (b) Conference Room

(c) Billiards Table (d) Kitchen

Figure 6.2: Di↵erent Scenes and Lighting Environments Used to Evaluate Percep-

tion of Rendering with GLEAM Estimation. (A),(B): Indoor Scenes with Incoming

Natural Daylight. (C),(D): Indoor Scenes with LED Lights.

6.2 Qualitative user studies

6.2.1 Realism

With the help of a qualitative online user study, we evaluated the realism of a

virtual scene illuminated using GLEAM’s illumination estimation. The user study

focused on the static visual fidelity of the virtual objects, as well as the adaption of

virtual objects to illumination changes in the environment.

The scene setup for the online user study included 2 naturally lit indoor scenes and

30

2 artificially lit indoor scenes as shown in Figure 6.2. Surrounding physical objects

included table surfaces, appliances, and glassware among other objects. For the online

user studies, we used the maximum resolution policy for the static augmented scenes

as well as dynamic composed videos.

For targeting static scene lighting, we created a dataset of images inserted with

virtual objects in the real scenes. Users were asked to compare virtual objects illu-

minated with GLEAM’s estimated environment map with those illuminated by (a)

a scene with no illumination, (b) a scene illuminated using a single white directional

light, (c) a ground truth environment map, and (d) ARKit 1.0 light estimation. The

ground truth environment map was obtained using a Samsung Gear 360 panoramic

capture with the camera placed in the scene at the point where the illumination is to

be estimated.

We used 26 pairs of images from the 4 di↵erent categories for the study. The

images presented were similar to the 4 pairs of images shown in Figure 6.3. The users

were informed that either one or both of the images were illuminated with correct

illumination estimates. The users had to choose which image looked more realistic of

the pair or indicate both as equally realistic.

To study how dynamic environmental illumination a↵ects perceived realism, we

added two one-minute videos to our online study. The videos were illuminated using

GLEAM’s estimates with a resolution priority policy. The participants were asked

to indicate if they perceived the illumination changing similarly and in sync with

surrounding objects along with if they found the overall scene realistic.

A total of 99 participants took the online user study. Overall we see a preference in

illumination estimated by GLEAM with 66.67% of users preferring GLEAM across

all image pairs. We see the preference of GLEAM in all 4 lighting categories, as shown

in Figure 6.4a.

31

(a) No Lighting (left) vs. GLEAM (right)

(b) GLEAM (left) vs. Directional Lighting (right)

(c) Ground Truth Lighting (left) vs. GLEAM (right)

(d) ARKit 1.0 (left) vs. GLEAM (right)

Figure 6.3: 4 of the 26 Questions from the Online Survey in Which User Were Asked

to Choose the More Realistic Scene from Each Pair of Images.

32

(a) Overall User Perception Towards Di↵erent Lighting

Conditions for Perceived Realism. Users Find Scenes

Illuminated by GLEAM Estimates to Be More Real-

istic Compared to No Lighting, Directional Lighting,

Ground Truth, and ARKit 1.0 Lighting.

(b) User Preference Against Di↵erent

Lighting Conditions for the Billiards Ta-

ble Scene.

(c) User Preference Against Di↵erent

Lighting Conditions for the Conference

Room Scene.

Figure 6.4: Breakdown of Results of the Online User Study Showing User Perception

of Realism Based on the 4 Categories of Lighting Compared, i.e. (i) GLEAM Vs.

No Lighting, (ii) GLEAM Vs. Directional Lighting, (iii) GLEAM Vs. Ground Truth

Lighting, and, (iv) GLEAM Vs. ARKit 1.0 Lighting.

33

In the conference room scene (Figure 6.2b, Figure 6.3b, Figure 6.4c), a significant

88.28% of users preferred GLEAM over other illumination alternatives, likely due

to GLEAM’s ability to capture the complexities of the skylight illumination in the

virtually reflective objects.

Notably, not all scene comparisons favored GLEAM. In particular, in the billiards

scene (Figure 6.2c, Figure 6.3c, Figure 6.4b), users preferred directional lighting over

the GLEAM lighting (and apparently over the ground truth lighting). We attribute

this outcome to our orientation of the scene’s virtual directional light, which we

positioned in the same direction as the physical LED lights in the environment, as well

as user expectation to see strong directional glints o↵ of round spheres. This motivates

a possible future direction to enhance realism by inferring accurate directional lighting

from GLEAM’s estimated environmental lighting.

For the two dynamic videos, we observed mixed responses with users indicating the

first scene (conference room) as more dynamic (72.22%) and more realistic (61.61%)

while the other (chemistry lab) as less dynamic (42.42%) and less realistic (24.24%).

This behavior could be due to the jitter of hand-held tracking, which made the lighting

changes in the chemistry lab scene unrealistic.

6.2.2 Policy trade-o↵s

The perceived e↵ect of illumination estimation should di↵er based on di↵erent

scene illumination. To evaluate this, we conducted an in-person user study in a

controlled environment (shown in Figure 6.5) to understand how di↵erent policies

a↵ect visual perception. The di↵erent configurations used to study the policies on

the constant network bandwidth of 64kB/sec. are summarized in Table 6.1.

We recruited 18 participants for this study who were asked to observe our system

for 3 di↵erent scenes on Nvidia Shield tablets. The participants were paired up and we

34

Figure 6.5: Environment Used for In-person User Studies. The Three Scenes Were

Illuminated with Dynamic Colored Lights And Static White Ambient Lights.

used multi-viewpoint GLEAM with each participant contributing to the illumination

estimation.

The lighting on the scenes was varied between a) static directional lighting, b)

dynamic directional lighting and c) ambient light + dynamic directional lighting.

The participants were asked to observe each scene with all 6 policy configurations

defined in §6.1. Each scene was rated on the perceived visual fidelity and dynamic

smoothness of the system on a scale of 1-10 for every policy. For consistent rating, each

participant also experienced the scene without lighting and with incorrect directional

lighting. To establish a baseline, participants were asked to give a rating of 0 if the

scene looked like it had no lighting, 3-4 with an incorrect directional lighting and 10

if it looked like real objects.

The survey revealed a general preference towards resolution and quality of illumi-

nation. As seen in Figure 6.6, we observe both configurations with resolution priority

35

(a) User-perceived Visual Fidelity Across

Policy.

(b) User-perceived Smoothness of Lighting

Changes Across Policy.

Figure 6.6: Breakdown of User Study Results on Perceived Visual Fidelity and

Smoothness of Di↵erent Policies on 3 Di↵erent Scenes {Chess Scene, Kitchen Scene,

Exhibit Scene} under 3 Di↵erent Lighting Conditions {Static Directional, Dynamic

Directional, and Static Ambient + Dynamic Directional}.

and low update rate with coverage priority were often rated higher than freshness

priority. This indicates users’ acceptance towards high visual fidelity, even on the

cost of low update intervals. This result concurs with our results from the online

study, revealing realism is often associated with the quality of lighting information

provided in the scene.

6.2.3 Comparative analysis with ARKit

Recently, the Apple ARKit 2.0 Beta released a module for augmented environment

map sensing. This puts GLEAM in contention with ARKit 2.0’s illumination esti-

mation system. Notably, GLEAM is compatible with all forms of mobile computing

devices with cameras, whereas ARKit is limited to modern iOS devices.

As a second component of our in-person user study, we compared GLEAM with

36

Table 6.3: User Perception of ARKit 2.0 Illumination Estimation Module Vs.

GLEAM.

GLEAM (#users) ARKit 2.0 (#users)

Visual fidelity 9/18 (50%) 9/18 (50%)

Smoothness 12/18 (66.7%) 6/18 (33.3%)

an implementation of ARKit 2.0’s environmental sensing. We deployed marker-based

AR applications using ARKit 2.0 having environmental sensing and GLEAM. Both

applications used the same scenes running on an iPad 10.5 inch with iOS 12.0. The

participants were asked to observe the lighting on di↵erent scenes on both systems

and indicate their preference on perceived visual accuracy and dynamic smoothness.

The results are summarized in Table 6.3.

GLEAM was marked as equally realistic in terms of visual fidelity as compared to

ARKit with users choosing either option 50% of the time. For dynamic smoothness,

users preferred GLEAM with a 66.7% majority. This shows that our system achieves

realistic as well as dynamic estimation against the commercial solution.

6.3 Post-evaluation analysis

Our evaluations prove e�cacy of the GLEAM system in providing realistic illumi-

nation for virtual scenes. Through runtime characterization of modules on di↵erent

devices, we observe the number of samples as being the decisive factor in determining

the execution time of individual modules. However, as we observe through our char-

acterizations in §4.2, network transfer is a substantial bottleneck, taking more time

than all 3 computational modules put together.

Our user studies reveal interesting trends in perceptual realism. Although a ma-

37

jority of users indicate GLEAM as their preferred choice for illumination modeling,

the high preference for directional lighting in the billiards scene makes us realize that

directional lighting is as important as ambient estimated lighting for a feeling of re-

alism. With the in-person user study, participant preference for high resolution and

visual fidelity indicates the importance of correctly lit virtual objects too. Moreover,

the studies reveal the importance of visual fidelity over dynamic update in scene

illumination, which is an unexpected outcome and needs to be studied in more detail.

38

Chapter 7

CONCLUSION

Through our system design and implementation we demonstrate the power of GLEAM

in bringing mobile mixed-reality closer to physical reality. Still, GLEAM is only an

early step to illumination estimation, serving as a framework to open the door for

several future opportunities, some of which we discuss here:

Distributed sampling for smoother collaborative sensing: Radiance sampling

from multiple overlapping viewpoints leads to redundant sampling, i.e., the same

portions of the cubemap are captured multiple times. We can exploit this redundancy

to optimize for di↵erent qualities. For dynamic range, di↵erent devices can capture

radiance samples at di↵erent exposure settings, collectively revealing illumination

details at a wider range of intensities. For low update intervals, devices can opt not

to send samples in overlapped regions to reduce the networking bottleneck of sample

transfer. Deeper investigation into GLEAM workload distribution across devices

and infrastructure, e.g., edge computing, could also reveal interesting opportunities

towards distributed illumination estimation and rendering.

Integration into rendering pipeline: In our Unity and Vuforia-based GLEAM

implementation, tracking positions and camera frames for radiance sampling are pro-

cessed after the game engine renders a frame. This makes GLEAM estimates stale by

the time they are used. To synchronize illumination estimation with rendering, we

plan to investigate a deeper integration of GLEAM into the capture and rendering

pipeline. By inserting computationally inexpensive – and potentially approximate –

estimates early into the pipelines, we can reduce the latency of updates. This will

39

(a) Standard Directional Lighting. (b) GLEAM Estimated Lighting.

Figure 7.1: A Typical Mixed-reality Scene with Multiple Virtual Objects Made of Dif-

ferent Materials (Plastic Airplane, Marble Statue, and Metallic Bunny) with Standard

Directional Lighting Compared Against GLEAM Estimated Lighting. The Realism

Imparted to the Scene Due to Estimated Lighting Is Apparent.

further improve the dynamic nature of GLEAM’s realistic lighting.

Automatic specular object tracking: GLEAM currently requires pre-defined and

calibrated target specular objects. We imagine that a future extension of the same

illumination estimation principles would leverage existing specular objects within an

environment. In such a system, the camera device, perhaps on a wearable head-

set, would continually identify, track, and observe reflective objects, inferring object

meshes to compute reflective geometry. Detecting reflective objects is a non-trivial

problem, but has seen recent advances [38]. In addition to the obvious benefit of im-

proving portability across infrastructure – obviating the need to carry a metal object

with you – a wider reflective sampling would allow illumination to be sampled for

multiple spatial points in the scene, i.e., the x in L

in

(x,!
i

) from Equation 2.1.

We present GLEAM, a system which estimates environmental lighting to illumi-

nate a virtual scene with accurate scene illumination and achieve visual realism as

40

shown in Figure 7.1. The GLEAM system comprises three major modules: (i) radi-

ance sampling, to generate radiance samples using reflective geometry; (ii) network

transfer, to share radiance samples among multiple participating devices; and (iii)

cubemap composition, to interpolate an environment map from the accumulated ra-

diance samples. We presented trade-o↵s between update interval and visual fidelity to

optimize for quality factors of resolution, coverage, and freshness based on situational

need.

Our implementation provides an operational prototype of the GLEAM system,

based on the Unity Game Engine and Vuforia library. We evaluated GLEAM by

microbenchmarking the execution times of di↵erent modules and by conducting user

studies, finding that users favor the perceptual realism of the virtual scene rendered

using GLEAM’s estimates. This work on real-time illumination estimation on mobile

and wearable systems thus contributes a step towards a richer immersive integration

between virtual and physical worlds.

41

REFERENCES

[1] F. Banterle, M. Callieri, M. Dellepiane, M. Corsini, F. Pellacini, and R. Scopigno.
Envydepth: An interface for recovering local natural illumination from environ-
ment maps. In Computer Graphics Forum, volume 32, pages 411–420. Wiley
Online Library, 2013.

[2] A. C. Bovik. Handbook of image and video processing. Academic press, 2010.

[3] M. Buerli and S. Misslinger. Introducing arkit-augmented reality for ios. In
Apple Worldwide Developers Conference (WWDC’17), pages 1–187, 2017.

[4] P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, New York, NY, USA, 1998. ACM.

[5] P. Debevec, P. Graham, J. Busch, and M. Bolas. A single-shot light probe. In
ACM SIGGRAPH 2012 Talks, page 10. ACM, 2012.

[6] V. Developer. Sdk, unity extension vuforia–7.1 (2018).

[7] Epic. Unreal engine. Online[Cited: October 1, 2018.]:
https://www.unrealengine.com, 2018.

[8] Y. Feng. Estimation of light source environment for illumination consistency of
augmented reality. In 2008 Congress on Image and Signal Processing, volume 3,
pages 771–775, May 2008.

[9] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto, C. Gagné,
and J.-F. Lalonde. Learning to predict indoor illumination from a single image.
ACM Transactions on Graphics (SIGGRAPH Asia), 9(4), 2017.

[10] Google. Arcore. Online[Cited: October 1, 2018.]:
https://developers.google.com/ar/discover/, 2018.

[11] T. Grosch, T. Eble, and S. Mueller. Consistent interactive augmentation of
live camera images with correct near-field illumination. In Proceedings of the
2007 ACM symposium on Virtual reality software and technology, pages 125–
132. ACM, 2007.

[12] L. Gruber, T. Langlotz, P. Sen, T. Höherer, and D. Schmalstieg. E�cient and
robust radiance transfer for probeless photorealistic augmented reality. In 2014
IEEE Virtual Reality (VR), pages 15–20, March 2014.

[13] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel. Interactive
system for dynamic scene lighting using captured video environment maps. In
Rendering Techniques, pages 31–42, 2005.

42

[14] J. T. Kajiya. The rendering equation. In Proceedings of the 13th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, pages
143–150, New York, NY, USA, 1986. ACM.

[15] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering synthetic objects into
legacy photographs. In Proceedings of the 2011 SIGGRAPH Asia Conference,
SA ’11, pages 157:1–157:12, New York, NY, USA, 2011. ACM.

[16] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, M. Sittig, and
D. Forsyth. Automatic scene inference for 3d object compositing. ACM Trans.
Graph., 33(3):32:1–32:15, June 2014.

[17] E. A. Khan, E. Reinhard, R. W. Fleming, and H. H. Bültho↵. Image-based
material editing. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages
654–663, New York, NY, USA, 2006. ACM.

[18] N. Kholgade, T. Simon, A. Efros, and Y. Sheikh. 3d object manipulation in
a single photograph using stock 3d models. ACM Trans. Graph., 33(4):127:1–
127:12, July 2014.

[19] J. Lalonde, A. A. Efros, and S. G. Narasimhan. Estimating natural illumination
from a single outdoor image. In 2009 IEEE 12th International Conference on
Computer Vision, pages 183–190, Sept 2009.

[20] J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan. Webcam clip art: Appearance
and illuminant transfer from time-lapse sequences. In ACM SIGGRAPH Asia
2009 Papers, SIGGRAPH Asia ’09, pages 131:1–131:10, New York, NY, USA,
2009. ACM.

[21] D. Mandl, K. M. Yi, P. Mohr, P. M. Roth, P. Fua, V. Lepetit, D. Schmalstieg, and
D. Kalkofen. Learning lightprobes for mixed reality illumination. In 2017 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pages 82–
89, Oct 2017.

[22] K. Nishino and S. K. Nayar. Eyes for relighting. In ACM SIGGRAPH 2004
Papers, SIGGRAPH ’04, pages 704–711, New York, NY, USA, 2004. ACM.

[23] D. Nowrouzezahrai, S. Geiger, K. Mitchell, R. Sumner, W. Jarosz, and M. Gross.
Light factorization for mixed-frequency shadows in augmented reality. In 2011
10th IEEE International Symposium on Mixed and Augmented Reality, pages
173–179, Oct 2011.

[24] NVIDIA. Nvidia physx library. Online[Cited: October 1, 2018.]:
http://www.nvidia.com/object/physx-9.17.0524-driver.html.

[25] M. Protter, M. Kushnir, and F. Goldberg. Method and a system for identifying
reflective surfaces in a scene, Apr. 6, 2017. US Patent App. 14/872,160.

[26] R. Ramamoorthi and P. Hanrahan. An e�cient representation for irradiance
environment maps. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 497–500. ACM, 2001.

43

[27] T. Richter-Trummer, D. Kalkofen, J. Park, and D. Schmalstieg. Instant mixed
reality lighting from casual scanning. In 2016 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 27–36, Sept 2016.

[28] K. Rohmer, W. Büschel, R. Dachselt, and T. Grosch. Interactive near-field illu-
mination for photorealistic augmented reality on mobile devices. In 2014 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pages 29–
38, Sept 2014.

[29] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution to superim-
pose virtual objects onto a real scene. IEEE transactions on visualization and
computer graphics, 5(1):1–12, 1999.

[30] D. Shepard. A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 1968 23rd ACM National Conference, ACM ’68,
pages 517–524, New York, NY, USA, 1968. ACM.

[31] SolidAngle. Arnold renderer, 2014.

[32] J. Unger, S. Gustavson, P. Larsson, and A. Ynnerman. Free form incident light
fields. In Computer Graphics Forum, volume 27, pages 1293–1301. Wiley Online
Library, 2008.

[33] J. Unger, J. Kronander, P. Larsson, S. Gustavson, and A. Ynnerman. Temporally
and spatially varying image based lighting using hdr-video. In Signal Process-
ing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5.
IEEE, 2013.

[34] J. Unger, A. Wenger, T. Hawkins, A. Gardner, and P. Debevec. Capturing and
rendering with incident light fields. Technical report, University of Southern
California Marina Del Rey CA, Inst. for Creative Technologies, 2003.

[35] UnityEngine. Unity game engine-o�cial site. Online[Cited: October 1, 2018.]
http://unity3d.com, pages 1534–4320, 2018.

[36] Y. Wang and D. Samaras. Estimation of multiple directional light sources for
synthesis of augmented reality images. Graphical Models, 65:185 – 205, 2003.
Special Issue on Pacific Graphics 2002.

[37] G. J. Ward. The radiance lighting simulation and rendering system. In Pro-
ceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’94, pages 459–472, New York, NY, USA, 1994. ACM.

[38] T. Whelan, M. Goesele, S. J. Lovegrove, J. Straub, S. Green, R. Szeliski, S. But-
terfield, S. Verma, and R. Newcombe. Reconstructing scenes with mirror and
glass surfaces. ACM Transactions on Graphics (TOG), 37(4):102, 2018.

[39] G. Xing, X. Zhou, Q. Peng, Y. Liu, and X. Qin. Lighting simulation of augmented
outdoor scene based on a legacy photograph. In Computer Graphics Forum,
volume 32, pages 101–110. Wiley Online Library, 2013.

44

[40] E. Zhang, M. F. Cohen, and B. Curless. Emptying, refurnishing, and relighting
indoor spaces. ACM Trans. Graph., 35(6):174:1–174:14, Nov. 2016.

45

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	2.1 Illumination estimation models
	2.2 Related work
	2.2.1 Measuring and estimating lighting
	2.2.2 Vision for mixed-reality

	3
	3.1 Sampling radiance through reflective geometry
	3.2 Networking devices for sample transfer
	3.3 Composing environment maps through sample interpolation

	4
	4.1 Quality factors
	4.1.1 Update interval: temporal resolution
	4.1.2 Spatial resolution: density of samples
	4.1.3 Coverage: angular deviation of samples
	4.1.4 Freshness: age of samples

	4.2 Situation driven policies
	4.2.1 Resolution priority
	4.2.2 Coverage priority
	4.2.3 Freshness priority

	5
	5.1 Unity-based Implementation
	5.1.1 GLEAM environment mapping
	5.1.2 Reflective objects and meshes
	5.1.3 Multi-device sample transfer
	5.1.4 Cubemap composition
	5.1.5 Multi-threading

	6
	6.1 Microbenchmarks
	6.1.1 Computational overhead per module
	6.1.2 Policy implications on execution time

	6.2 Qualitative user studies
	6.2.1 Realism
	6.2.2 Policy trade-offs
	6.2.3 Comparative analysis with ARKit

	6.3 Post-evaluation analysis

	7

	REFERENCES

