
GLEAM: An Illumination Estimation Framework for Real-time
Photorealistic Augmented Reality on Mobile Devices

Siddhant Prakash
sprakas9@asu.edu

Arizona State University

Alireza Bahremand
abahrema@asu.edu

Arizona State University

Linda D. Nguyen
ldnguye4@asu.edu

Arizona State University

Robert LiKamWa
likamwa@asu.edu

Arizona State University

ABSTRACT
Mixed reality mobile platforms attempt to co-locate virtual scenes
with physical environments, towards creating immersive user ex-
periences. However, to create visual harmony between virtual and
physical spaces, the virtual scene must be accurately illuminated
with realistic lighting that matches the physical environment. To
this end, we design GLEAM, a framework that provides robust
illumination estimation in real-time by integrating physical light-
probe estimation with current mobile AR systems. GLEAM visually
observes reflective objects to compose a realistic estimation of phys-
ical lighting. Optionally, GLEAM can network multiple devices to
sense illumination from different viewpoints and compose a richer
estimation to enhance realism and fidelity.

Using GLEAM, AR developers gain the freedom to use a wide
range of materials, which is currently limited by the unrealistic
appearance of materials that need accurate illumination, such as
liquids, glass, and smooth metals. Our controlled environment user
studies across 30 participants reveal the effectiveness of GLEAM in
providing robust and adaptive illumination estimation over com-
mercial status quo solutions, such as pre-baked directional lighting
and ARKit 2.0 illumination estimation. Our benchmarks reveal the
need for situation driven tradeoffs to optimize for quality factors in
situations requiring freshness over quality and vice-versa. Optimiz-
ing for different quality factors in different situations, GLEAM can
update scene illumination as fast as 30ms by sacrificing richness
and fidelity in highly dynamic scenes, or prioritize quality by al-
lowing an update interval as high as 400ms in scenes that require
high-fidelity estimation.

CCS CONCEPTS
• Human-centered computing → Mobile computing; Mixed
/ augmented reality; User studies; • Computing methodolo-
gies → Active vision; Image processing; • Software and its en-
gineering → Real-time systems software; • Computer systems
organization→ Distributed architectures.
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1 INTRODUCTION
Light estimation is a critical component for photorealistic rendering
of virtual scenes. For augmented reality (AR), a merging of virtual
and physical worlds, accurate light estimation is especially impor-
tant; inaccuracies in light estimation create noticeable visual incon-
sistencies between the virtual scene and physical environment, as
shown in Figure 1. Lighting inconsistencies remove the user from
the immersive experience, whether or not the user is consciously
aware of the inaccuracy in the scene illumination [8, 22]. This is
more problematic for certain virtual materials. While matte “Lam-
bertian" surfaces suffice with most forms of virtual lighting, correct
representation of specular surfaces requires a rich estimation of
lighting [23, 28]. Without capabilities of illumination estimation,
AR developers are forced to avoid the use of even partially reflective
materials, such as glass, liquid, and polished metal.

Sufficient light estimation requires not only the intensity of
light, but also the directionality of light. Furthermore, light esti-
mation must be updated in real-time, adjusting to changes in the
dynamic environment of a physical setting, e.g., people casting
shadows, opening/closing doors, or turning on/off lights. Conse-
quently, current approaches have thus far been inadequate. At
this time, released Google ARCore implementations [13] provide
coarse illumination estimation through ambient light sensing of
average pixel values in a scene. Meanwhile, Apple ARKit [2] and
academic research solutions sample light transmissions from the
scene geometry [24, 25, 34] and use machine learning inference to
estimate directional light intensity [9, 20]. These solutions can be
computationally expensive and slow to update. We measure that
ARKit updates its illumination every 3.7 sec. Furthermore, these
techniques are prone to inaccuracy when filling in missing infor-
mation.

Thus, towards real-time high-fidelity estimation, we designGLEAM,
a software framework toGenerate Light Estimation forAR onMobile
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Figure 1: AR scene illuminated with ARKit (left) and
GLEAM (right) illumination estimation, along with re-
flected environment in light probe (inset). GLEAM creates
visual harmony between objects in virtual scenes and phys-
ical environments for improved photorealism.

systems in real time. We integrate light probe estimation from the
graphics community, which uses physical reflections to estimate
dynamic real-time illumination from several directions. GLEAM
observes images of geometrically-tracked reflective light probes,
which can be attached to hand-held controllers, game pieces, or
other physical objects. Integrated with AR camera tracking engines
for streamlined processing, GLEAM uses images of light probes to
estimate incoming light in the physical environment.

We develop GLEAM through a set of computational modules
for radiance sampling and cubemap composition. The construction
of these modules is computationally efficient by design; radiance
sampling leverages existing optimized game engine infrastructure
for geometric processing, while cubemap composition involves only
lightweight interpolation techniques. Furthermore, our Unity-based
implementation takes care to not interrupt the main thread. Instead,
GLEAM launches an auxiliary thread to minimize the influence of
estimation overhead on the continuous runtime of the application.

We also design an optional network transfer module to allow
nearby devices to share radiance sample information. A single cam-
era viewpoint of a light probe will provide a basis of illumination
estimation, but can be improved with information not captured in
its viewpoint. Thus, when available – such as in a classroom or
museum – multiple AR devices can share viewpoint-specific data
to jointly improve illumination estimation.

The quality of estimation depends on multiple factors: coverage,
resolution, freshness and update interval. We provide tradeoffmech-
anisms to balance the quality factors to the virtual and physical
needs and expectations. If the scene demands high resolution, such
as for reflective objects, developers can sacrifice update interval to
prioritize resolution, updating only at 400ms. However, if the envi-
ronment is highly dynamic, such as with expected interaction or
shadowing, GLEAM can sacrifice resolution to have update interval
as low as 30ms for adaptiveness to lighting changes.

Our 30-participant user study helps us evaluate perceptual effects
of GLEAM. The study revealed the efficacy of GLEAM in capturing
accurate directionality of environment lighting with 25 out of the
30 indicating that GLEAM captured light more accurately than
ARKit. The participants also indicated that GLEAM is able to adapt
to change in lighting faster than ARKit.

The main contributions of this paper are:
• A solution for integrating traditional image-based lighting
estimation on mobile systems to achieve real-time illumina-
tion estimation.

• Situation-driven system tradeoffs to optimize for specific
quality factors based on the needs of the virtual scene or
target environment.

• A user study to evaluate (a) the effect of illumination estima-
tion methods on human perception, comparing pre-baked
lighting, ARKit, and GLEAM; and (b) situational quality pref-
erences for guiding system tradeoff decisions.

In this paper, §2 covers the background and challenges of illu-
mination estimation for mobile AR. §3 gives an overview of our
GLEAM design. §4 describes trade-offs between visual quality and
update interval. §5 describes our Unity-based implementation. §6
covers our user studies and system evaluations. §7 discusses previ-
ous related works. §8 imagines future research.

2 BACKGROUND & CHALLENGES
GLEAM builds on a rich history of illumination estimation from
the graphics community. The aim has been to estimate illumination
models that graphics renderers can use to illuminate virtual scenes
realistically for enhanced visual appeal. Researchers have proposed
different strategies to generate illumination models, including mea-
sured lighting [3–5] using physical light probes, sun-sky model
estimation [18, 33] for outdoor scenes, and inferring perceptually
plausible illumination [15, 16] from a single image.

Illumination models are often formulated under the “distant
scene assumption”: the intensity of incoming ray depends on the
direction of incidence only. Thus, modeling illumination boils down
to mapping angular directions in the 3D space to light ray intensity.
Under the distant scene assumption, illuminationmodels are usually
represented in the form of environment maps, mapping incoming
ray direction to ray intensity. One of the most commonly used
representations for environment maps is a “cubic environmentmap"
or “cubemap", shown in Figure 2b. Each spatial “texel” on a cubemap
face maps to a discrete direction. Thus, mapping directions as the
vector between the center of a cubemap and its texels (Figure 2c), a
cubemap stores intensities spanning angular directions in 3D space.

2.1 SfM-based illumination estimation
Advances in structure-from motion (SfM) and pose estimation on
mobile devices have led to the development of systems that exploit
these to estimate lighting for AR. Using 3D structural information
about a physical environment, the accurate direction of incoming
radiance samples can be associated with the correct radiance in-
tensity. However, using such methods are expensive and require a
pre-computation step to perform the SfM prior to generating the
illumination model.

Apple’s ARKit’s illumination estimation uses structural informa-
tion of the scene to create an environment map based on camera
frames continually captured. The generated cubemap includes large
missing parts because of the limited field-of-view of a single camera
frame. ARKit handles this challenge by using “a machine learning
algorithm to approximate the environment texture for parts of
the scene it has not seen yet, based on a training model involving
thousands of environments1."

1verbatim from Unity ARKit Plugin Documentation (Section:
AREnvironmentProbeAnchor).

https://bitbucket.org/Unity-Technologies/unity-arkit-plugin/src/d381878da15b523610e4a69c66e150ac71c470b2/docs/WhatsNewInARKit2_0.md?fileviewer=file-view-default


(a) A chrome ball placed on a
marker serves as a GLEAM light
probe.

(b) Cubic environment maps (cubemaps)
are one of the most common representa-
tions of environment maps.

(c) Each texel on the cubemap
represents a discrete direction in
3D space.

Figure 2: Illumination is modeled using physical light probes, such as a chrome ball (left), using which an environment map
(middle) is generated that represents the intensity of light coming from discrete direction in 3D space (right).

On an Apple iPad 10.5", we have observed the resulting system
to be inaccurate and slow to update, resulting in an average up-
date interval of 3.7 sec. To compute the average update interval,
we screen-recorded an application performing illumination estima-
tion using ARKit and measured the interval between consecutive
frames when illumination was updated. This delay can be seen in
commercially released ARKit applications, such as JigSpace.

2.2 Physical light probes estimation
To perform broad, accurate, and real-time illumination estima-
tion, we employ the technique of physical light probe estimation,
capturing images of a light probe to reveal environmental lighting
information. The light probe is a reflective object, such as a chrome
ball (Figure 2a), placed at the location where the lighting needs to be
sensed. By associating captured pixels with the angle of incoming
light, systems can construct estimations of surrounding lighting.

This method was first explored by Debevec et al [4], who used a
high-dynamic range (HDR) image of a reflective sphere captured in
the environment to re-light a virtual scene with estimated physical
illumination. Using physical light probe estimation can deliver high
visual fidelity and richness sincewe physicallymeasure the radiance
at the location where the virtual scene is to be rendered. Thus, we
choose this strategy and integrate it with current mobile systems
to work towards achieving photorealistic illumination estimation
for mobile AR.

2.3 Challenges/opportunities of integrating
light probe estimation into mobile AR

The main contribution of this work studies the system integration
of different tasks to sense and compose a cubemap from light probe
estimation in real time. This approaches the following challenges
and opportunities.
Integration with AR frameworks: To the best of our knowledge,
we are the first to integrate physical light probe estimation into
mobile AR systems in real time. Integration with standard game
engines provides opportunities to leverage state-of-the-art track-
ing and positioning systems for accurate AR placement and also
provides tools for geometric processing, e.g., raycasting and mesh
collision. Successful integration onto standard game engines al-
lows our illumination estimation to work across a variety of mobile
systems, including smartphones, tablets, and headsets.

Flexibility to virtual scene and physical environment: Differ-
ent virtual scenes and physical environments have different lighting
and rendering needs, based on the reflectiveness of the virtual ma-
terials and the static or dynamic nature of the surrounding physical
environment. The illumination estimation should be sensitive to
such needs, and provide developers and/or users the ability to tune
illumination estimation to prioritize different quality settings. We
pursue this challenge by defining quality metrics and situation-
driven tradeoff mechanisms to exchange quality prioritization.
Opportunity to leveragemultiple viewpoints:Although curved
reflective objects allow narrow camera viewpoints to observe wide
environmental areas, a single perspective lacks a complete repre-
sentation of the lighting from all angles. However, when more users
are present, such as in a classroom or museum setting, there is an
opportunity to integrate lighting estimation from multiple view-
points with heightened richness and fidelity. To this end, we pursue
challenges related to efficient distributed sampling among multi-
ple devices, complete with strategies to integrate estimations from
multiple viewpoints. This allows the benefits of the illumination
estimation to scale to improve with additional users.
Computational efficiency: All mobile systems suffer from lim-
ited computational resources. Complicating the matter, image pro-
cessing is notoriously computationally expensive. A chief victim
of an overloaded system is a reduction in the frame rate of AR
applications, considerably degrading user experience. Thus, so as
to preserve user and developer expectation, we design our illumi-
nation estimation system with computational efficiency in mind.
Furthermore, we implement our estimation system as an auxiliary
thread, causing no interruption to the main thread and thereby pre-
serving the high frame rate experiences of standard game engines.

3 GLEAM DESIGN
To provide real-time illumination estimation on AR devices, we
propose our software framework GLEAM, which visually observes
a reflective light probe object to accurately model scene illumina-
tion. Though built on established light probe estimation algorithms,
GLEAM solves the systems integration challenges of tracking, sam-
pling, and computational efficiency within a real-time mobile AR
environment. To do this, we compose GLEAM with three key mod-
ules: (i) radiance sampling, (ii) optional network transfer, and (iii)
cubemap composition, as illustrated in Figure 3. In this section, we
describe these key modules in detail.
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Figure 3: GLEAM illumination estimation system comprises three modules: (a) The radiance sampling module generates a
collection of radiance samples by using raycasting to observe reflections off of a reflective light probe; (b) The optional network
transfer module shares samples among multiple devices in the system; (c) The cubemap composition module interpolates
collected radiance samples to create a combined high quality cubemap.

3.1 Radiance sampling
Cubemaps associate illumination radiance intensities and colors to
the angular directions of the incoming light towards the scene. The
intensity and color of incoming light associated with its angular
direction becomes a “radiance sample." The goal of this module is
to generate radiance samples to be used by subsequent modules
for composing the cubemaps. Captured images of a reflective light
probe with known shape and position can geometrically reveal
such radiance information as the object surfaces reflect light into
the camera. Thus, to capture radiance samples for an environment
map, we spatially position the reflective light probe in the physical
scene with respect to an AR positioning marker. Together, the
reflective light probe and the AR positioning marker become a
GLEAM light probe. Using standard marker-based pose estimation
tools to geometrically track the position between the camera and
the marker, the GLEAM system can indirectly calculate the position
of the virtual camera, the specular object, and the physical scene.
This forms the coordinate basis of the radiance sampling.

Specular reflection follows a strict geometric pattern: the angle of
the reflected ray from a surface normal θr ef lect matches the angle
of the incident ray from the surface normal θcam . As illustrated in
Figure 3a, GLEAM leverages this principle in virtual AR engines to
estimate radiance samples using the following process:

(1) Project a virtual ray from each pixel along its camera ray
(θcam ) into the virtual scene.

(2) Determine if and where a collision occurs between the ray
and a specular surface in the virtual scene.

(3) Reflect the ray over the collision surface normal to generate
an incoming ray vector (θr ef lect ).

(4) Associate the camera pixel color and intensity with the angle
of the incoming ray. This association is a radiance sample.

We leverage the geometric raycasting and collision capabilities of
the game engine to execute all four of these steps with optimized
computational efficiency.

DIY GLEAM light probe. Inspired by Google Cardboard and Nin-
tendo Labo efforts, we similarly advocate for accessible hands-on
development from engaged users and developers. Here, we provide
instruction for Do-It-Yourself (DIY) construction of light probe. This

involves three components: (i) a light probe, (ii) a makeshift stand,
and (iii) an AR image marker.

A light probe can be purchased at hardware stores or online
retailers, in the form of a 1.5-inch ball bearing. This typically costs
$5 USD. To hold the light probe, a flat marker pen cap can be used
to stabilize the probe. We use a Staples Remarx Dry-Erase marker
cap to serve as our stand. The AR image marker can be printed on
normal printer paper, or on cardstock for durability. Sufficient image
marker guidelines are on Vuforia, ARKit, and ARCore websites.

The assembly is simple: place the stand in the center of the image
marker, and place the light probe on the stand. The calibration for
this DIY light probe is similarly straightforward. One must only
measure/estimate the distance from the bottom of the stand to the
center of the light probe and enter it into the game engine envi-
ronment, e.g., Unity. Camera-marker correspondence is maintained
through the image marker tracking. This automatically provides
spatial synchronization among samples from different camera view-
points. Generalization/standardization for DIY variability could be
supported through configurable user interfaces, but the software
engineering exercise is beyond the scope of this paper.

3.2 Optional network transfer
GLEAM presents an optional network transfer stage to collect radi-
ance samples from multiple device viewpoints. Radiance samples
generated from a single viewpoint will cover partial regions of the
cubemap. The remaining regions can be coarsely estimated through
interpolation, as we will discuss in the cubemap composition stage.
However, in situations where multiple users view the same scene,
e.g., classroom or museum scenarios, there is opportunity for ra-
diance samples from multiple viewpoints to contribute to jointly
populate the environment map. To leverage this, GLEAM uses a
local network to share illumination information among multiple
mobile devices, as illustrated in Figure 3b. The effective results of
single- and multi-viewpoint GLEAM are shown in Figure 4.

The requirements for networking are simple: upon sample gen-
eration, a GLEAM device will transmit sets of samples to all other
GLEAM devices that observe the same target. Local multiplayer
game engines typically adopt a client-server model, using the server
to synchronize information among multiple clients. To remove the
need for a dedicated server, the server behavior is often hosted on
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Figure 4: GLEAM computes radiance samples using a reflective object to compose cubemaps.

one of the client applications, which becomes a multiplayer “host".
This satisfies the needs for transferring radiance samples among
GLEAM devices with negligible latency. A full evaluation of the
network requirements for different configurations of GLEAM is left
for future work.

3.3 Cubemap composition
The generated and received radiance samples form a sparse estima-
tion of illumination. To create a usable cubemap, GLEAM spatially
interpolates the samples into the cubemap space, as illustrated in
Figure 3c. While choosing interpolation algorithms, we need to
consider not only interpolation quality, but also computational
overhead. This is especially important because the cubemap up-
dates on every newly processed list of samples, repeatedly incurring
interpolation overhead.

To fill the cubemap, GLEAM uses a modified inverse distance
weighting (IDW) interpolation [27]. Our IDW interpolation op-
erates on each cubemap texel, computing a weighted average of
nearby samples. We primarily weight each radiance sample by the
inverse of its distance from the texel. For low complexity, we use
Manhattan Distance as our distance function:

d(x, xi) = | |x − xi | |1 =
n∑
j=1

|xj − xi j |

We also weight radiance samples on their reliability, depend-
ing on where the sample was captured from. Radiance samples
collected on the outer rim of the light probe are subject to distor-
tion from projection offset inaccuracies. This is well-documented
in light probe estimation techniques [30], and due to the nature
of reflective geometry. The angular inaccuracy is directly propor-
tional to the angular deviation between the pixel’s camera ray
vector θcam and the reflected incoming ray vector θr ef lect . Thus,
we use the inverse of the angular deviation as a reliability score
ri = 2π/∠(θcam ,θr ef lect ), weighting reliable samples stronger for
cubemap consideration. Notably, multi-viewpoint GLEAM will al-
low low reliability samples from one viewpoint to be overridden by
higher reliability samples from another viewpoint. The reliability
score combines with the distance to form the sample weight:

wi (x) =
ri

d(x, xi)

We find the interpolated intensityu of texel x from nearby samples
ui = u(xi ) for i = 1, 2, ...N using the IDW function given by

u(x) =

∑N
i=1wi (x)ui∑N
i=1wi (x)

, if d(x, xi) , 0 ∀ i;

ui , if d(x, xi) = 0
To computationally perform IDW interpolation, we iterate over

our list of samples, adding each sample’s weighted intensity value
and weight to all cubemap texels within a neighborhood radius. We
then iterate over the cubemap texels, dividing the sum of weighted
pixel values by the sum of distance weights to generate the interpo-
lated texels. IDW will leave cubemap gaps from texels that do not
occupy any sample neighborhoods. To fill the remaining gaps, we
use a nearest neighbor algorithm to assign missing cubemap texels.

IDW and nearest neighbor are two of many interpolation mech-
anisms that can satisfy the needs for cubemap interpolation. Other
strategies, e.g., structural inpainting or neural network-based meth-
ods, are also viable solutions, with potentially higher quality at
the expense of computational complexity. To prioritize for reduced
computational complexity, we leave the full exploration of such
algorithms as a future research avenue. By interpolating radiance
samples into a full cubemap on a per-frame basis, the GLEAM
system provides a dynamically updating scene illumination.

4 SITUATION-DRIVEN TRADEOFFS
The realism of the virtual scene rendered by AR engines depends
on the quality of illumination estimation. Multiple quality factors
contribute to a high quality environment map, including coverage,
freshness, resolution, and a fast update interval. Under a fixed set
of computational resources, these quality factors compete with one
another, necessitating tradeoffs to sacrifice some factors for others.
However, not all quality factors are needed for all situations. Specif-
ically, depending on the virtual scene materials and the dynamic
nature of the physical environment, various quality factors can be
promoted over others. We discuss this situation dependence as we
define quality factors in §4.0.1. Leveraging this fact, GLEAM can
tradeoff quality factors through parameterized policies (§4.1).

4.0.1 Quality factor definitions. Coverage defines the angular spread
of the radiance samples over the cubemap. Covering larger regions
of the cubemap allows for accurate representation of lights and



(a) GLEAM update interval is limited by to-
tal runtime on increasing number of samples
generated. (Cubemap Face res. = 64; Age =
2000 ms)

(b) Computational cost of cubemap com-
position module increases by an order-of-
magnitude with cubemap face resolution.
(#samples = ∼ 4500 (max); age = 2000ms)

(c) There is no significant effect on GLEAM
module runtimes with change in age. (#sam-
ples generated = ∼ 4500 (max); Cubemap Face
res. = 64)

Figure 5: Characterizing runtime performance of GLEAM single-viewpoint prototype.

shadows from more angles. The optional network transfer stage of
GLEAM assists with coverage by collecting radiance samples from
multiple viewpoints.

Resolution defines the amount of detail the illumination estima-
tion can represent. Higher resolution is beneficial in virtual scenes
with smooth reflective materials, in which the surrounding environ-
ment is visible. This includes glass materials, polished metals, and
liquid surfaces. For non-smooth materials, illumination estimation
resolution is less perceptible; in virtual scenes with rough or matte
materials, the resolution can be reduced without detriment.

Freshness defines how long ago the illumination estimation in-
formation was sampled. Higher freshness allows the estimation to
adapt quicker to changes in the environment by discarding older
estimation information. Lower freshness accumulates estimation
information to build estimations with higher coverage and resolu-
tion, but blurs environmental changes over time. Thus, freshness is
useful to capture the needs of the dynamically changing physical
environments, but can be sacrificed to assist in other quality factors,
especially in static physical environments.

Update Interval defines the rate at which the illumination esti-
mation is refreshed. While freshness indicates the age of the oldest
radiance samples used in an estimation, the update interval indi-
cates the recency of the newest radiance samples to be included
in an estimation. For dynamically changing environments, a fast
update interval will allow the illumination estimation to quickly
incorporate changes in the physical environment. However, to allot
time to collect radiance samples and compute cubemaps, GLEAM
may sacrifice update interval to ensure other quality factors.

4.1 Tradeoffs
Figure 5 shows the trends in runtime of the GLEAM system and its
modules based on the 3 parameters that control quality factors. So
as not to constrain performance, we perform the characterization
on a Windows desktop, hosting a 3.5GHz Intel Xeon Processor
with 128 GB RAM and an Nvidia GeForce GTX 1060 GPU.

4.1.1 Number of radiance samples generated. GLEAM can collect
a different number of radiance samples to balance the coverage,
resolution, and update interval. Spiraling outward from the center
of the image of the light probe, a larger collection of samples will
span a broader set of angles to populate the cubemap. If the distance

between the probe and device camera is increased, we observe the
amount of samples generated decrease. This is because at farther
distances, fewer pixels capture the reflective object.

The number of samples captured also has an effect on the runtime
performance of the radiance sampling runtime and the cubemap
composition runtime as shown in Figure 5a. Together, the total run-
time limits the update interval of the estimation. With an increasing
number of samples, the sampling workload increases, raising the
sampling runtime. However, at and above 1000 samples, raising
the number of samples reduces the composition runtime. This is
because the interpolation workload decreases as angular cover-
age increases. Altogether, this creates a relatively constant update
interval of 34−45ms between 1000 and 4000 samples.

With 500 samples, however, both sampling and composition run-
times are low. The composition workload decreases, as samples are
interpolated over fewer cubemap faces, using average pixel value to
populate the missing faces. This improves the update interval to a
lower 22ms, allowing for rapid adaptation to dynamic environment
at the expense of resolution and coverage.

While performing characterization experiments, the system cap-
tured up to 4500 samples for the fixed distance and FullHD reso-
lution scenario. The variation in number of samples is due to the
radiance sampling algorithm, which checks if all possible samples
are extracted for every frame. The algorithm takes additional time
near the edges of the reflective object to check the same which also
contributes to the non-linear behavior in Figure 5a when sampling
at max-capacity.

4.1.2 Cubemap face resolution. The resolution of the cubemap
allows a tradeoff between detail capture and runtime performance.
As shown in Figure 5b, higher resolutions degrade the composition
runtime performance, limiting update interval. For a cubemap res-
olution of 64 pixels, GLEAM achieves an update interval of 44ms,
which increases to 170mswhen the resolution is doubled to 128.

The rise in computational cost on increasing the face resolution
is due to an increase in the number of texels that need to be filled
in the cubemap. Doubling the face resolution increases the number
of texels in the cubemap by four times, increasing the composition
workload.

However, higher cubemap face resolutions will allow an im-
provement in the fidelity and richness of the appearance of smooth



materials in virtual scenes. This is contingent on having enough
radiance samples to fill the dense cubemap space. For improved res-
olution, the sacrifice in update interval may be justified for scenes
with glass, metals, liquids, and other smooth surfaces.

4.1.3 Age of samples. GLEAM can maintain the freshness of the es-
timation by discarding samples above a given age threshold. Lower
thresholds will allow the estimation to only keep samples that adapt
to changing illumination in the physical environment. However,
higher thresholds will allow the estimation to accumulate samples
to improve the resolution and coverage of the cubemap as the user
moves around the scene. Notably, as shown in Figure 5c, the age
does not significantly affect the runtime performance of the GLEAM
modules, and therefore has little effect on the update interval.

Thus, the threshold parameter for the age of samples creates a
tradeoff between freshness, resolution and coverage. As mentioned
earlier, freshness is useful in expected dynamic lighting, while other
quality factors should be prioritized for static lighting.

4.1.4 Summary. These three tradeoffs allow developers to prior-
itize (or compromise) qualities of coverage, resolution, freshness,
and update interval of the GLEAM estimation. These tradeoffs can
work with single viewpoint GLEAM for a single device or multi
viewpoint GLEAM with networked devices. Optimal prioritization
becomes situation dependent; virtual scenes with smooth surfaces
need high resolution, and dynamic lighting benefits from high fresh-
ness and low update interval. Developers can make decisions to
tune GLEAM to their users’ needs.

To further study these tradeoffs, we design five configurations of
GLEAM as described in Table 1. Our evaluation studies their effect
on visual perception (§6.1.3) and system performance (§6.2).

5 IMPLEMENTATION
We develop software through the Unity 3D game engine [7] and
PTC Vuforia [6] to provide the graphics rendering and AR track-
ing infrastructure for our GLEAM implementation. GLEAM uses
Unity’s UNet API to transfer samples between devices. Unity sup-
ports cross-platform deployment, which allows us to harness the
versatile design of GLEAM for Android, iOS, macOS, and Windows
deployments. As of this writing, GLEAM has been designed and
tested on Nvidia Shield K1 Tablet, Apple iPhone X, Apple iPad 10.5",
Samsung Galaxy S8, OnePlus 3T, Apple MacBook Pro, and Win-
dows 10 desktop computers. Additionally, our GLEAM prototype
is backward compatible on Android and iOS. Our evaluation uses
the DIY light probe.

GLEAM environment mapping. In our implementation, GLEAM uses
Vuforia SDK’s marker-based pose estimation to track reflective ob-
jects. Vuforia, in addition to generating pose estimates, also provides
the camera frame that is used to obtain the correspondences be-
tween the camera and an image marker. When generating radiance
samples, we extract the pixel intensities of the reflective objects
from this frame.

GLEAM represents environment maps as Unity’s Cubemap ob-
jects. Cubemap objects in Unity are Texture2D objects indexed using
a CubemapFace value and two floating-point values for spatial lo-
cation on each cubemap face. The intensity of each sample in the
Cubemap is stored as Unity’s Color32 object, which stores the red,
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Figure 6: Multi-threaded GLEAM implementation. An aux-
iliary thread keeps the main thread free for interactive dis-
play frame rates.

blue, green and alpha channel intensities as a byte value within
the range of 0-255. The color and intensity of the corresponding
pixel obtained from the camera frame is used as the intensity of the
radiance sample generated. To store the direction, samples store
a single CubemapFace value and two spatial floating-point values,
which are directly used as Cubemap indices.

Cubemap composition. After the transfer of samples is complete,
GLEAM uses collected sample lists to compose an environment
map. All samples which are to be used in the environment map
are composed into a Unity Cubemap object. GLEAM uses a Unity
material which has a “skybox shader" as the environment map to
light the scene. By setting the main texture of the material to the
cubemap, GLEAM achieves realistic lighting in every frame.

Multi-threading. To achieve interactive display frame rates and
smooth cubemap updates, we employ multi-threading, as shown
in Figure 6. Unity’s main thread includes operations to compute
the game state and render frames to the screen. Thus, to preserve
fast frame rates, we aim to minimize operations performed on the
main thread. Sample generation requires main thread operation to
perform game physics raycasting. Applying the cubemap requires
the main thread operation to influence rendering operations. All
other GLEAM operations, e.g., sample network transfer, environ-
ment map composition, are performed on an auxiliary thread so as
not to block the main thread during operation. As we later show in
our microbenchmarking, this sufficiently allows fast frame rates,
limited only by the overhead of Vuforia tracking.

6 EVALUATION
Our evaluation aims to answer the following:

• “How does illumination estimation advance the realism of
AR past pre-baked lighting solutions?"

• “How does GLEAM compare against ARKit (the state-of-the-
art illumination estimation framework)?"

• “How does variation in GLEAM parameters impact visual
perception and system performance?"



(a) Kitchen Scene (b) Living Room
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(c) User study envi-
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Figure 7: Using different AR scenes, we evaluate perceptual
effects via a controlled environment user study.

Table 1: GLEAM configurations used for evaluation

#Samples Age Cubemap Face
Policy per List (ms) res. (pixels)
Single-view SV 4000 200 128
Multi-view MV1 2000 1500 128
Multi-view MV2 500 1500 128
Multi-view MV3 2000 300 128
Multi-view MV4 500 300 128
Multi-view MV5 2000 200 64

To evaluate these questions, we conducted a user study with 30
participants and our GLEAM single- and multi-viewpoint proto-
types.We also perform benchmark analysis on the 5multi-viewpoint
GLEAM configurations to monitor the runtime performance of
GLEAM modules.

Each multi-viewpoint GLEAM configuration used two devices
that contributed to the process of generating samples and creat-
ing the environment map. In the user-study (§ 6.1), users were
paired with one another for objective evaluation of single and multi-
viewpoint configurations. For benchmarking (§ 6.2), the devices
were positioned on tripods at different locations and orientations
from the physical probe.

Unfortunately, we are unable to generate objective quantitative
measures, e.g., SSIM, for image quality comparisons. This is because
there is a lack of means to estimate ground truth lighting at the
precise estimation location, and comparing rendered images would
be subject to material inaccuracy and bias of scene selection.

6.1 Perceptual user study
We designed our user study with different scenes and lighting
conditions to test the following hypothesis: “Illuminating a virtual
object with accurate environmental illumination imparts realism to
the scene."

6.1.1 Study design. We used 9 virtual scene illumination methods
for our studies. For the first question, we asked the participants
to compare 3 virtual lighting environments: (i) no light, (ii) pre-
baked directional light, and (iii) GLEAM estimated light. To com-
pare GLEAM against ARKit, we provided users with scenes enabled
with (iv) ARKit’s illumination estimation module and GLEAM sin-
gle viewpoint estimation. Finally, we ran the study comparing 5

different configurations of GLEAMmulti-viewpoint estimated light-
ing (v-ix) as described in Table 1 against single-viewpoint estimated
lighting.

We used 2 scenes for the study to test user perception across a
range of materials. Each scene required 1 GLEAM light probe. We
used the “Standard Unity shader" on all models in our scenes. To
vary thematerial properties, we changed the albedo,metallic and the
smoothness properties of the shader. Since GLEAM is built for close-
range mobile AR applications, such as multi-user AR games and
training, AR exhibits, and AR shopping, the scenes were designed to
depict similar use-cases. The kitchen scene (Figure 7a) used objects
with predominantly specular materials such as reflective utensils
(metallic: 1, smoothness: 0.85). The living room scene (Figure 7b) used
diffuse materials with low smoothness (metallic: 0-0.3, smoothness: 0-
0.26). Real objects similar to the virtual objects in the scenes (utensils,
couch, etc.) were provided for objective comparison.

The study was designed to measure user perception in both static
and dynamic environmental lighting conditions. There were two
types of light sources: overhead DMX lights and incandescent lamps
were placed around the scenes. To simulate dynamic lighting, we
switched the lights on/off in a fixed loop pattern. Figure 7c shows
the user study environment.

Participants observed the scenes through their handheld mobile
devices. The participants were free and encouraged to move
around the scenes, casting shadows by blocking the light sources
intentionally or unintentionally. The participants used an Apple
iPhone X (A1901) or an Apple iPad 10.5" (A1709). Both devices were
connected via a local WiFi hotspot.

The study took place in 2 parts: First, the participants were asked
to report their observations on one of the 8 lighting methods (No
lighting, Directional lighting, GLEAM single-view, and 5 GLEAM
multi-view) at random. The observations were made as an integer
rating from 1-10 on 3 visual perception metrics: richness, fidelity,
and adaptiveness as described in Table 2.

Second, participants were asked to compare GLEAM single-
viewpoint estimation and ARKit estimation by means of a post-
study survey. In the survey, the participants were asked to indicate
their preferred method on 2 criteria: i) directionality of source lights,
and ii) objects blend with surrounding, after observing an applica-
tion performing light estimation in the same scene on same device
with ARKit and GLEAM one after another. For this comparison, the
participants were informed about the method they were observing
beforehand.

The participants were encouraged to provide their subjective
comments on ARKit and GLEAM estimations post-survey. The
study was also recorded on video.

6.1.2 User recruitment and statistics. The study was approved by
the institutional IRB of Arizona State University and recruitment
was done via email and social media. We recruited 30 participants.
36.7% of the participants reported themselves as working with
images and videos in a professional capacity (computer graph-
ics/vision researcher, photographers, digital artist, game developers,
etc.), while 56.7% of the participants used smartphones for casual
photography. 66.7% reported that they were familiar with AR/VR
content, having used either technology more than 3 times. 30% of
the participants were females and 80% of the participants were in



(a) Kitchen, Dynamic Lighting (b) Living Room, Dyn. Lighting (c) Kitchen, Static Lighting (d) Living Room, Static Lighting

Figure 8: To evaluate the need for illumination estimation, we compare GLEAM against pre-baked methods: static directional
lighting and no lighting.

Table 2: Metrics for user ratings on a scale of 1-10.

Metric Definition
Richness The visual quality or appeal of the scene due

to illumination. If the scene looked rich and
detailed, they got a high rating on richness.

Fidelity The measure of correctness of illumination. If
the light came from the right direction in the
scene making the object look accurately illumi-
nated, the rating for fidelity was high.

Adaptiveness The ability to adapt to illumination changes. An
instantaneous response to changing illumina-
tion warranted a high adaptiveness rating.

the age group of 18-25 years. None of the participants reported
being diagnosed with color blindness.

6.1.3 Results and analysis. At the onset of the study we predicted
the following outcomes: (i) Estimated lighting carries higher ac-
curacy than pre-baked directional or no lighting. Hence, GLEAM
estimated lighting should be rated higher than pre-baked methods
on the 3 visual perception metrics to indicate heightened realism;
(ii) ARKit illumination should receive higher ratings on richness
than GLEAM estimates, but the adaptiveness and fidelity of lighting
will be better with GLEAM; and (iii) For multi-viewpoint GLEAM
estimations, configurations with higher coverage should achieve
better richness and fidelity rating than adaptiveness rating, while
configurations with high freshness should do better on adaptive-
ness.

Pre-baked vs. estimated lighting. Figure 8 shows the mean rating
reported by the participants for the 3 visual perception metrics
when the estimation methods were changed between no lighting,
pre-baked directional lighting, and GLEAM. We observe a prefer-
ence towards GLEAM in the kitchen scene across all metrics. For
the living room scene, directional lighting was rated slightly higher
on richness and fidelity, while we monitor mixed responses on
adaptiveness.

These outcomes indicate the dependency of human visual per-
ception on material of objects. The virtual objects in the kitchen
scene had a highly specular surface which made it easier for the

Figure 9: User preference of GLEAM (single-viewpoint)
against ARKit for correct directionality of lighting (left) and
match with surrounding environment (right).

participants to observe the effect of environmental illumination
reflected in the virtual scene. In the living room scene, the diffuse
materials did not reflect the nuances of environmental lighting
changes on the objects’ surface.

ARKit vs. GLEAM single-viewpoint estimation. As mentioned in §2,
ARKit uses the camera view to estimate its cubemap, filling in
missing portions with machine learning. The comparison between
ARKit and GLEAM (single-viewpoint) turned out to be highly in
favor of GLEAM, as reported in Figure 9.

25 of the 30 participants favored GLEAM’s estimation of the
directionality of light. Moreover, 16 of them indicated that ARKit
failed to detect or incorrectly detected light sources. This result
demonstrates the efficacy of GLEAM in providing accurate illumi-
nation estimation that adapts to the environment lighting. Here we
attach some subjective comments:

• Participant 6 (GLEAM): “The lights were changing to different
levels, and GLEAM seem to keep up with the lighting changes.
If there was any change on ARKit it was very slow."

• Participant 20 (Both): “They both seemed to come from the
correct direction. However, at times
GLEAM seemed to do it faster than the other."

• Participant 11 (GLEAM): “GLEAM provided better reflection
as it adapted with the lights pretty accurately."

• Participant 18 (ARKit): “The reflection was more clear, and
there was more of a recognizable environment, but I saw more
random blue lights, but also some yellow lights in the pots and
pans."



(a) Mean user rating on richness. (b) Mean user rating on fidelity. (c) Mean user rating on adaptiveness.

Figure 10: User visual perception of GLEAM single- and multi-viewpoint configurations used in our study.

User perception of GLEAM configurations. We report the mean user
ratings for different configurations of GLEAM estimated lighting
on the 3 metrics as perceived on the kitchen scene in Figure 10.
For this comparison, we disregard ratings from the living room
scene because of the participants’ lack of ability to distinguish
illumination changes.

In general, multi-viewpoint estimation garnered better ratings
than single-viewpoint estimation across all metrics, proving the
benefit of multi-viewpoint estimation over single-viewpoint esti-
mation.

If the number of samples generated is increased, we observe
boosts in richness and fidelity when age is low (MV3 vs. MV4),
while these factors are not affected when age is high (MV1 vs. MV2).
This is because with high age, the resolution and coverage is already
being improved due to accumulation of samples. As predicted in
§4.1.1, increasing samples generated (from MV1 to MV2) reduces
perceived adaptiveness.

Surprisingly, increasing resolution has no apparent effect on
fidelity. But with reduced resolution we see a significant increase in
adaptiveness as MV5 is rated better in adaptiveness than all other
configurations. We suspect the lack of fidelity improvement to be
due to the lack of dense samples to fill the larger cubemap.

For age, with a low number of samples, it becomes clear that
higher age provides higher richness and fidelity (MV2 vs. MV4).
However, with a high number of samples (MV1 vsMV3), we observe
user perception do not follow the trends predicted in §4.1.3 for either
coverage, resolution, or fidelity. This may be because with high
number of samples, coverage and resolution are already high, while
with a higher age of 1500 ms, the systemwas sufficiently adaptive to
the changes in illumination. This was an unexpected (but welcome)
outcome.

6.2 Micro-benchmarks
Weexecutemicro-benchmarks onGLEAM single- andmulti-viewpoint
configurations to evaluate the runtime performance of different
modules and the GLEAM system. The data was collected across de-
vices with multiple constrained and unconstrained configurations.
Figure 11 reports the runtime performance of the three modules:
radiance sampling, network transfer, and cubemap composition
along with the total GLEAM runtime.

6.2.1 Computational overhead permodule. The computational over-
head of the cubemap composition module dominates overall exe-
cution time, consuming over 86% of GLEAM’s execution time on

average across all devices and policies. This is due to the itera-
tive computational expense of interpolation across cubemap texels.
Meanwhile, the overhead of the radiance sampling module only
consumes up to 6% of GLEAM’s execution time on average. Radi-
ance sampling only requires a constant set of geometric operations
for each image pixel destined to be a radiance sample.

The execution time of the network transfer module is negligible.
The Unity engine handles network transmissions on a separate
non-blocking thread, allowing minimal execution overhead. How-
ever, while it does not block execution, the transfer itself is not
instantaneous and may vary based on network bandwidth.

6.2.2 Policy implications on execution time. The execution time of
the radiance sampling module and cubemap composition module
are both related to the number of samples, as shown in §4.1. Policies
that prioritize number of samples increase execution time. To fully
minimize update interval, the policies that prioritize low age retain
very few samples, further reducing execution time. This noticeably
reduces the overhead of cubemap composition, allowing for rapid
update cycles.

Post-evaluation take-aways
Our perceptual study comparing GLEAM with pre-baked lighting
confirms the need for estimated lighting in AR applications. The
dependence of human perception for realistic virtual materials
was also revealed as an extended outcome of the experiment. The
results support our claim thatGLEAMenables developers to use
a wider palette of materials with realistic appearance through
illumination estimation.

In comparison with ARKit, GLEAM was perceived to be more
accurate and adaptive to changes. However, ARKit was perceived
to be better in richness despite being inaccurate and slow. ARKit
fills in the environment map texels with pixels obtained from cam-
era frame, which may result in very incorrect information being
captured. This is observed in Figure 12 because the camera is fac-
ing downward, sampling a very small portion of the entire space.
Clearly, the machine learning algorithms used are not sufficient
to fill-in the maps acceptably. We envision our GLEAM system
to work in tandem with ARKit’s estimation module to pro-
vide GLEAM’s essential boosts in fidelity and adaptiveness while
adopting ARKit’s sampling techniques for cubemap richness when
necessary.

Finally, our perceptual study and benchmarking of different
GLEAM configurations revealed the improvement achieved with



(a) Windows Desktop, 3.5 GHz Intel Xeon Pro-
cessor, Nvidia GeForce GTX 1060 GPU

(b) Nvidia Shield K1 (v5.3) (c) Samsung Galaxy S8 (SM-G950F)

(d) Apple Macbook Pro 15" (A1707) (e) Apple iPhone X (A1901) (f) Apple iPad 10.5" (A1709)

Figure 11: Runtime performance of different modules on GLEAM configurations

GLEAMwithmulti-viewpoint configurations. One of the prominent
outcomes of the study was GLEAM single-viewpoint being out-
performed by MV2 and MV5. MV2 performed better than all other
configuration generating the same resolution cubemaps which can
be attributed to low sampling runtime and hence lower update inter-
val. This result convincingly proves the significance of low update
interval due to reduced sampling in achieving smooth user experi-
ence. Meanwhile, MV5 – with its order-of-magnitude lower update
interval – was rated as the better configuration between all GLEAM
configurations as it provided sufficient resolution, coverage, and
freshness while maintaining a low update interval.

7 RELATEDWORKS
Illumination estimation is a well-studied computer graphics prob-
lem. Here, we discuss various facets of illumination estimation.

Measuring and estimating lighting As described in §2, image-
based lighting [3–5] uses reflection probes to measure illumination
of the scene. Alternative explorations through temporal image
based lighting [10, 12, 31] led to HDR or RGBD videos of reflec-
tion probes being captured and used for illumination estimation
over time. Sparse [1, 26] as well as dense [29, 32] sampling were
employed through a combination of custom light probe devices
and capture techniques to improve estimation for different situa-
tions. Various works use image features to regress an illumination
model [11, 17, 21]. Others have exploited perception to approxi-
mate illumination [9, 14–16], which is not always accurate to the
physical environment. Estimating illumination for outdoor scenes
with perceptual or implicit methods can give very wrong results,
and was addressed by [18, 19, 33]. We study their method of evalu-
ating perceptual illumination, especially in the design of our user
studies. Beyond these works, we solve challenges in integrating lil-
lumination estimation in mobile systems for real-time high quality
lighting.

Vision for mixed-reality lighting Some of the recent SfM-based
methods use multiple-viewpoints and depth sensors on mobile
devices for illumination estimation. Fish-eye cameras can model
illumination from multiple viewpoints and offloads computation to
a PC server for estimating illumination [25]. Removing the need
for fish-eye cameras, commercial RGB-D Kinect sensors can esti-
mate illumination from 3D reconstruction of everyday objects [24].
Towards more dynamic estimation, GLEAM is designed for com-
mercial mobile devices and uses marker-based pose estimation to
surpass the need for 3D reconstruction.

8 DISCUSSIONS
Through our GLEAM prototype we provide accurate and real-time
illumination estimation for mobile AR. GLEAM is only an early step
to photorealistic AR on mobile systems, serving as a framework to
open the door for several future opportunities.

Denser sampling: We observe that increasing cubemap face reso-
lution does not by itself lead to richer estimation. Constant capture
resolution limits the angular coverage of the samples generated.
One way to ensure denser coverage is increasing capture resolution
which results in more pixels translating to samples, resulting in
more detailed cubemaps. Moreover, generating samples from the
camera frame (a la SfM) in addition to the samples generated from
reflective geometry can provide a denser sampling at the cost of
slower update, while still providing real-time estimation. We need
to explore such tradeoffs for situations that demand a high sampling
density for better visual quality.

Distributed sensing: To improve runtime efficiency, we envision
that GLEAM could use the network transfer module in a distributed
framework to reduce computational overhead by eliminating re-
dundant processing. For example, if the viewpoints of two or more
devices coincide, only one device needs to perform reflective geom-
etry and share the samples with all other devices. We can further ex-
ploit this redundancy for other qualities. For dynamic range, devices



Figure 12: ARKit (left) and GLEAM SV (right) illuminated scenes composed of different materials. The environment is shown
as reflected on a chrome ball in inset.

can capture radiance at different exposure settings, collectively re-
vealing illumination details at a wider range of intensities. Deeper
investigation into GLEAM workload distribution across devices
and infrastructure, e.g., edge computing, could reveal interesting
opportunities towards distributed estimation and rendering.

9 CONCLUSION
We present GLEAM, a system that estimates environmental light-
ing to illuminate a virtual scene in real-time with accurate scene
illumination. The GLEAM system comprises three major modules:
(i) radiance sampling, to generate radiance samples using reflective
geometry; (ii) optional network transfer, to share samples among
multiple participating devices; and (iii) cubemap composition, to
interpolate an environment map from the accumulated samples. We

presented trade-offs between update interval and visual fidelity to
optimize for quality factors of coverage, resolution, and freshness
based on situational need. A supplementary video showing the
working system can be found here: https://youtu.be/2gPrfCJyCoc.
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