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SUPPLEMENTAL MATERIALS

Noise Model Details

The noise model used in this paper proceeds in two main stages: first
the model is fitted, based on an input image and noise map. Second,
this model is used to synthesise noise for virtual content added to the
scene.

Fitting

The inputs to the fitting step are the input image I and the estimated
denoised image InoNoise produced by the denoising method. From these
we find an estimate for the ground truth noise NGT = I − InoNoise.

We first construct a Laplacian pyramid of NGT . The examples in this
paper make use of a 4-level Laplacian pyramid, which was sufficient as
noise was typically of high frequency. The final level of the pyramid
containing the means was ignored, as we assume the noise to have zero
mean.

We compute local standard deviations for each level of this pyramid
using the method of [? ], to wit we use the standard formula:

σ(X) = E(X2)−E(X)2 (1)

We find local means by applying a blur B to the pyramid level, so
for the lth level of the pyramid NGT,l :

σ(NGT,l) = B(N2
GT,l)−B(NGT,l)

2 (2)

In our case we choose B to be a 9x9 Gaussian blur with σ = 4 at the
highest resolution pyramid level. The value of σ was halved at each
level to provide the same effective pooling size at all resolutions.

At each pyramid level l we then fit a linear mapping Ll from the
luminance at each pixel (i.e. Y channel of the image in YCbCr format)
to the local standard deviations σ(NGT,l). Since we have standard
deviations for the red, green and blue channels, this is a mapping
Ll : R→ R3. This is fitted by least-squares linear regression, giving
a 2x3 matrix encoding the model per pyramid level. In practice we
sample the images once every 32 pixels in each dimension to greatly
reduce the number of samples our model has to fit to, meaning the
least-squares fitting has to find the pseudo-inverse of a much smaller
matrix. This pixel skip is also halved as we move down each resolution
level.

Our total model consists of a total of 4×2×3 = 24 parameters.

• Siddhant Prakash, Anthony Steed, and Tobias Ritschel are with University
College London. E-mail: {s.prakash | a.steed | t.ritschel}@ucl.ac.uk .

• David R. Walton is with Birmingham City University. E-mail:
david.walton@bcu.ac.uk .

• Rafael K. dos Anjos is with University of Leeds. E-mail:
r.kuffnerdosanjos@leeds.ac.uk .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Synthesis
To synthesise noise to add to some noise-free virtual content Ivirt, we
first start from an image containing random normally-distributed noise
Ninit over the RGB channels. A laplacian pyramid of this noise map
is constructed, and each level is normalised to have local standard
deviation of 1 at all locations. This is achieved by finding the local
standard deviations σ as above, and simply dividing through:

Nnorm,l =
Ninit,l

σ(Ninit,l)
(3)

We find the luminance of the virtual content we wish to add the
noise to Yvirt. For each pyramid level of the noise we input this to the
corresponding linear mapping Ll to obtain a map of standard deviations
in red, green and blue. We multiply these by the normalised noise
pyramid levels Nnorm,l to achieve the correct statistics at each pyramid
level. Finally, reconstructing from this Laplacian pyramid of weighted
noise maps produces the synthesised noise, which can be added to the
virtual content.

We note that though our current implementation is based in Pytorch,
efficiency could be further improved by making use of graphics hard-
ware accelerated MIP map generation to compute the pyramids as was
done in Walton et al. [? ].

Table 1: List of cameras and lenses used.

Camera + Lens Figure

Flir Chameleon 3 + Fig. 1, Fig. 2
TV 16mm 1:1.4 Fig. 3 Row 1, 2, Fig. 10 (a, c, d),

Fig. 1 (a, d) (supp)

Sony Alpha 7III + Fig. 3 Row 4, 5,
Tamron 28-75 F/2.8 Fig. 10 (b), Fig. 11, Fig. 2 (supp)

Nikon D3100 + Fig. 3 Row 3
Nikkor 55-200mm F/1.4-5.6 Fig. 10 (e, f)

Meta Quest 3 + on-device lenses Fig. 9

Additional Results and Comparison
A list of cameras and lenses used for results in each figure is provided
in Tab. 1.

We provide additional results similar to Fig. 10 and Fig. 11 of the
main paper in Fig. 1 and Fig. 2, respectively.

We also show the parameters recovered as a result of our optimiza-
tion on the images in Fig. 3 of the main paper in Fig. 3, Fig. 4, and Fig.
5.
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Fig. 1: Additional typical results produced by our approach. We always show a pair of Naive(naïve) compositing (columns 1,3) and Ours (columns
2,4). Below each pair, we show insets from both methods.
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Fig. 2: Additional comparison between different methods (columns) on different scenes (rows). Please note that all methods except Ours either
have seen the marker and need it to be present (OkumuraEtAl and OkumuraEtAl++) or need previous calibration on a known object from the scene
MandlEtAl. Our methods does not use that marker, neither did it see the scene before. We add a virtual Zebra figurine (rows 1, 4), virtual Tiger
figurine (rows 2, 5) and a virtual Elephant figurine (row 3) to the scene. All other objects are real.
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Fig. 3: Recovered parameters for motion blur (MB). On the left three columns we show images captured at varying exposure levels. This can be
observed from varying level of motion blur in the real falling ball. On the right we have our reproduction of motion blur on virtual falling balls which is
blurred with the parameters recovered from our optimization. The exposure parameters recovered are shown below each frame.



Fig. 4: Recovered parameters for noise. We show the residual noise from input images (left three columns, second and fourth row) and our generated
noise (right three columns, second and fourth row) as a result of our optimization for the images (left three columns, first and third row). The
generated noise are synthesized over the virtual composites (right three columns, first and third row) on the input images to make them consistent
with overall noise in the image.
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Fig. 5: Recovered parameters for depth-of-field (DoF). We show the DoF model G(.) (bottom row) recovered for different input images (top row) with
varying parameters. In the left three columns we show input images with varying focus distance, focused at far, middle and near plane respectively.
In the right three columns we show input images with varying aperture setting of f/2.8, f/5.6 and f/11.0 respectively. We notice our recovered model
accurately predicts the focal plane as well as the shallowness of DoF with decreasing (narrowing) aperture.


