Android Application Usage Profiling

® Profiling an Android Application
® Gathering Memory Usage Statistics
® Log Messages
® Performance Monitors
® Data Analysis
® System Information

Profiling an Android Application

To gather application running statistics on the system, you can profile the system using Android Studio Performance Profiling tools https://develop
er.android.com/studio/profile/index.html.

The IDE provides a set of different tools which can effectively be used to profile any application running on a device or an emulator. To profile the

memory usage, CPU/GPU usage or Network bandwidth usage, we can use the Android Monitor https://developer.android.com/studio/profile/andr
oid-monitor.html.

The Android Monitor helps us in these tasks:

® Log messages, which can be either system or hardware defined.
® Monitor memory, CPU and GPU usage by the application.
® Network bandwidth usage statistics.

To enable Android Monitor you need to take care of some prerequisites and dependencies as specified.

1. The device should remain connected to the system via USB cable and the system should be able to detect the device.

2. Enable ADB integration by selecting Tools > Android > Enable ADB Integration. Enable ADB Integration should have a check mark next
to it in the menu to indicate it's enabled.

3. Make sure Android Device Monitor is not running currently.

4. Inyour app, set the "debuggabl e" property to "t rue" in the manifest or "bui | d. gr adl e" file (it's initially set by default).

Now we just need to display the Android Monitor and when we run the application on the device, we can see its statistics be noted on the
corresponding screen for "log messages (logcat)" or “"performance monitors (monitors)". To view the Android Monitor, you can select it from View
> Tool Windows > Android Monitor. Or you can also display Android Monitor by clicking on the Android Monitor button, which is on the bottom of
the main window by default or using the shortcut Alt+6. A screenshot of an app being profiled is shown below.

Android Monitor B L
Samsung SM-G935F Android 7.0, APl 24 n | facebook.Fédemo (24258) n
& logcat ! Monitors +*
D S — |
Q. Memory Il ™ [& s 7 + i
10.48 M8
< 8.00 MB Free [2.01 MB]
Le:] 4.00 MB Allocated [6.13 MB]
0.00 M3 T T T T T T T T T T
? 155 20s 255 30s 355 a0s 455 505 555 1m Ds
A cPu n e ? L I S
100.00 %
B0.00%
User [0.00 %]
40.00% B Kernel [0.00 %]

0.00 %

T T T T T T T T T T
155 205 55 30s s 405 45s 505 555 m bs
Network I 7 i

5.00 KB/s
4.00 KBfs
Tx [0.00 KBjs]

2.00 KBfs.

Gathering Memory Usage Statistics

Android Monitor provides us with various tools to check the usage statistics of the android application. Here we will list down some tools and try to
understand how these help in understanding the memory usage of the application.

Log Messages

The "logcat" monitor gives us the log messages while the application is deployed and running in real time. It helps us in understanding what is

https://developer.android.com/studio/profile/index.html
https://developer.android.com/studio/profile/index.html
https://developer.android.com/studio/profile/android-monitor.html
https://developer.android.com/studio/profile/android-monitor.html

happening in the system which is very useful for debugging. For example if an application crashes the best way to find out the cause of the crash
is to check the last few commands of the logcat. The screenshot below shows the logcat monitor while an app is running.

Android Monitor NE
[@ Samsung SM-G935F Android 7.0, AP 24 - I facebook.F8Bdemo (21408) -
1 | iii logeat | Monitors -+ [Verbuse - @')REQEX Shawanlyselectedapplicationn
o - acebook. T8demo ootImp! assifyCamera]: setView = DecorVi C assityCamera] touchMode=true
@ m 75 314088-31437/facebook. f8demo E/FBDEMO: Couldn't parse net from data.
. 34 31408-31437/facebook.f8demo E/FSBDEMO: done.
) 34 31408-31437/facebook. f8demo E/FBDEMO: Instantiating predictor...
4 34 31408-31408/facebook. f8demo D/ViewRootImpl@d7433d6[ClassifyCameral: MSG_RESIZED REPORT: ci=Rect(@, @ - 8, B) vi=Rect(®, @ - 8, 8) or=1
L] 34 31488-31408/facebook. f8demo D/ViewRootImpl@d7433d6[ClassifyCameral: MSG WINDOW FOCUS CHANGED 1
¥ o 31408-31408/facebook. f8demo V/InputMethodManager: Starting input: tba=android.view.inputmethod.EditorInfo@I201544 nm : facebook.f8demo ic=null
? 7¢ 35 314088-31408/facebook.f8demo I/InputMethodManager: [IMM] startInputInner - mService.startInputOrWindowGainedFocus
__'] 12 314088-31421/facebook. f8demo D/InputTransport: Input channel constructed: fd=88
IS 13 31408-31491/facebook.f8demo I/OpenGLRenderer: Initialized EGL, version 1.4
L3 31408-31491/facebook. f8demo D/OpenGLRenderer: Swap behavior 1
Ch 18 31408-31491/facebook. f8demo D/1ibGLESv1: STS_GLApi : DTS is not allowed for Package : facebook.f8demo
19 31488-31491/facebook.f8demo D/mali winsys: EGLint new window surface(egl winsys display*, void*, EGLSurface, EGLConfig, egl winsys surface**, egl color buffer format*, EGLBoo
13 31408-31408/facebook.f8demo I/CameraManagerGlobal: Connecting to camera service
33 31408-31437/facebook. f8demo A/native: [F given_tensor_fill_op.h:27] Check failed: output-»size() == values_.size() output size: 37748736 given size: 11087562
?7 B 31408-31437/facebook. f8demo A/native: terminating.
33 31408-31437/facebook.fademo A/libc: Fatal signal 6 (SIGABRT), code -6 in tid 31437 (AsyncTask #1)

Performance Monitors

[06-19 16:38:50.384 30897: 3897 W/ 1
debuggerd: handling request: pid=31488 uid=10247 gid=10247 tid=31437

There are four types of performance monitors which helps us monitor the performance of the app in real time. We can get the statistics for
Memory Usage, CPU Usage, Network Usage and GPU Usage with the help of this monitor. They give us tools to record specific additional data in
files which can be analysed by using specific analysis tools. The screenshot below shows the performance monitor with each of the four
resources being monitored in real time.

1 4 DroTopuT.
Android Monitor - L
[{] samsung SM-G935F Android 7.0, APl 24 n \ Facebook.F8Bdemo (27226) -
(o P logcat | Monitors +*
u |
@nMemury n ™mEigE 7 + + L
1031 MB 1 |
o 800 ME Free [1.23 MB]
-] 200 MB [Allocated [8.20 MB]
?
0.00 MB
40s 455 50s 55s 1m0s 1m5s 1m 10s 1m 155 1m 20s
ja cPU n @ ? + 4 L
100.00 %
B0.00 % 7] vser [33.47 %]
2000 % W Kemel [2.56 %)
0.00 %
40s 455 50s 55s 1m0s 1m5s 1m 10s 1m 155 1m 20s
M Network I 7 1+ 4+ L
5.00 KBJs
4.00 KB Tx [0.00 KB/s]
200 KBS I R [0.00 KBfs]
0.00 KB T T T T T T T T T
40s 455 50s 555 1m0s 1m 5s 1m 10s 1m 155 1m 20s
A GPU m - + 4 &
This monitor is disabled.

Data Analysis

System Information

In the Android Monitor main window, we can find the System Information icon on the side as marked in the screenshot below.

Android Monitor #*¥- L ||Gr
[i Ssamsung SM-G935F Android 7.0, AP 24 - \ facebook.F8demo (4791) - =]

i logeat | Monitors +°

M Memory n = §@ ? + ¥

10,31 MB
8.00 MB

I+~

Free [4.02 MB]

4.00 MB . Allocated [6.28 MEB]

0.00 ME:

~ @ o(@a &

255 30s 355 405 455 50s 555 1m 0s 1m 55 1m 10s

4 cPu nwe ? + 3
100,00 % l ‘

[

80.00 %
User [26.32 %)

W cemel (464 %)

40.00 %

0.00 % T 1 T 1 T 1 T T T T
25s 30s 35s 40s 455 50s 555 1m0s 1m Ss 1m 10s

A Network 11 7 1+ ¥

5.00 KB/s
4.00 KB/s

I+~

Tx [0.00 KB/s]

2.00 KBls ‘ -

P.4Run =2 TODO | & 6:Android Monitor I&, 9:Version Control Terminal [E| 0: Messages

On clicking the icon you will get a list off system information that you can access. These are the various outputs of the "dumpsys" command.

® Activity Manager State - dumpsys activity
® Package Information - dumpsys package
® Memory Usage - dumpsys meminfo
® A screenshot of the memory usage statistics is shown below. It gives us most of the information we need to know about the
amount of memory being used by the application.

[Z] cMakeLists.txt x | (& android x | [2 org.tensorflow.demo_2017.06.19_11.19.txt x | ‘& AndroidManifest.xml = ‘ [iii local.properties x | [sii gradle-wrapper.properties x | @

1 Applications Memory Usage (in Kilobytes):
Uptime: 236507865 Realtime: 978596088

4 ** MEMINFOQ in pid 15067 [org.tensorflow.demo] **

5 Pss Private Private SwapPss Heap Heap Heap
6 Total Dirty Clean Dirty Size Alloc Free
8 Native Heap 105435 105384 28 94 1177680 100077 17682
9 Dalvik Heap 65201 65168 1] 82 17767 108661 7106
18 Dalvik Other 817 816 1] a

11 Stack 424 424 1] a

12 Ashmem 4 4]]

13 Other dev 5] 4]

14 .50 mmap 10250 388 7684 44

15 .apk mmap 345 0] a

16 .ttf mmap 54 0 24 0

17 .dex mmap 564 500 64]

18 .oat mmap 2928 <] 804 a

19 .art mmap 1358 aase 76 9

28 Other mmap 18 4]]

21 EGL mtrack 38304 38304 1] a

22 Unknown 379 376 0 18

2 TOTAL 226333 212256 8684 247 135527 110738 24738
24

25 App Summary

26 Pss(KB)

28 Java Heap: 66132

29 Native Heap: 105384

38 Code: 9464

31 Stack: 424

32 Graphics: 38304

33 Private Other: 1232

34 System: 5393

36 TOTAL: 226333 TOTAL SWAP PS5: 247

38 Objects

39 Views: 9 ViewRootImpl: 1

46 AppContexts: 3 Activities: 1

41 Assets: 3 AssetManagers: 2

42 Local Binders: 11 Proxy Binders: 20

43 Parcel memory: 5 Parcel count: 21

44 Death Recipients: 2 OpenSSL Sockets: 2]

45

46 sQL

47 MEMORY _USED: 1]

48 PAGECACHE_OVERFLOW: o MALLOC_SIZE: 0

® Memory Usage over Time - dumpsys procstats
® Graphics State - dumpsys gfxinfo

Some of the other Data Analysis tools which can be viewed using Android Monitor are as listed.

1. HPROF Viewer and Analyzer: This tools dumps the Java Heap to an HPROF file using the Memory Monitor. It's icon can be found, as
one of the three icons, on the memory monitor just beside the play/pause button. The output of the dump can be viewed in the HPROF

Viewer which gives a nice class hierarchical view of the heap dump.

. Allocation Tracker: This tool can also be found on the Memory Monitor which is used to track down all the memory allocation data in the

app. It displays each method responsible for the allocation along with the size and the number of instances.
. Method Trace

. GPU Debugger

	Android Application Usage Profiling

