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SMOTE: Synthetic Minority Over-sampling
Technique
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Abstract—Class imbalance in datasets has been one of the greatest challenge in classification tasks in machine learning. Often times
the most important samples are the ones which is least represented. This results in an inherent bias towards the majority class while
learning the classifier, resulting in a higher rate of mis-classification of minority class samples to majority class. Our work provides a
study of the class imbalance in datasets and reviews ways in which the problem has been dealt with. Furthermore, we implement an
algorithm “SMOTE”, which tackles this problem by generating synthetic samples from the minority class samples and augmenting it to
the dataset. We plot the ROC Curve for classification using Decision Trees, Naive Byes and k-Nearest Neighbor classifiers and
compare the performance of our algorithm with the help of ROC Convex Hull (ROCCH) and Area-Under-the-Curve (AUC) metrics.

Index Terms—Imbalanced class datasets, minority over-sampling, ROC, Convex Hull, AUC
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1 INTRODUCTION

THE seminal work, “SMOTE: synthetic minority over-
sampling technique” [1] deals with the fundamental

problem of imbalanced class data-sets in machine learning,
where, data points of one class are in majority over data
points of another class. A number of times the data points
belonging to the minority class are more important than
the majority class. This majority-minority skew in the data-
set leads to classification in favor of majority class samples
when one uses standard classification techniques like Naive
Bayes or Decision Trees. In several cases, the penalty for
mis-classifying these minority classes are much higher than
mis-classifying the majority class. For example, the problem
of classifying images of mammograms for cancerous cell
detection is very sensitive and mis-classification may lead
to disastrous outcomes. Still, the number of positive class
samples is way outnumbered by the number of negative
class samples with the majority (negative) class sample
constituting 98% of total samples.

The authors in [1] propose a new algorithm to augment
the minority samples in a data-set by creating synthetic data
points for minority class in the feature space, to even the
data distribution between majority and minority classes.
They compare the result obtained by this new technique
with the results of plain under-sampling the majority sam-
ples, as well as over-sampling the minority samples as pre-
viously done in other works dealing with the problem. The
results show that their method leads to learning of better
classifiers. Further, they show that the classifiers improve
with near equal representation from all class in training
data. The authors use Receiver Operating Characteristics
(ROC) curves as their performance measure. ROC curves
provide trade-off between true positive (TP) vs. false posi-
tive (FP) which is much more suited to the class imbalance
problem than the error rate (accuracy) metric. Area Under
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the Curve (AUC) and convex hull of ROC curve are used
for the experiments as they provide good comparison of the
classifiers’ performance in class imbalance scenarios both
quantitative and qualitatively.

In our project, we learn to deal with the challenges
of class imbalanced data-sets and how to overcome them.
We reproduce the work done in [1] and understand the
problem by going over the previous works cited in this
paper. Additionally, we summarize the various techniques
researchers came up to deal with this issue in Section 2.
We overview the performance metrics used in this paper
and explain why the authors chose to use these metrics,
as well as how are they relevant to this particular problem
in Section 3. We then move on to the implementation of
the algorithm SMOTE proposed in the paper, along with
two more approaches which was used to emphasize the
novelty of this technique in Section 4. We replicate the
experiments section on 3 of the 9 datasets listed in the
paper, using Decision Trees, Nearest Neighbours and Naive
Bayes classifiers to learn classification models in Section 5.
We also use the prediction results from these models to
plot ROC curves, and taking AUC and convex hull of the
curve as evaluation metric, compare our plots with the plots
obtained in the paper and provide a detailed discussion on
the results in Section 6. Finally, we conclude our work with
an overview of future works in Section 7.

2 PREVIOUS WORKS

Most of the cases of imbalanced dataset is dealt in two
ways, viz. under-sampling the majority class samples or
over-sampling the minority class samples. Different domain
requires different techniques for the same based on their
requirement. When it comes to under-sampling the majority
class, Kubat et al [12] [13] experimented with the same.
In Kubat and Matwin [12], the majority class is selectively
under sampled while the minority class sampling remains
fixed. The performance metric used for the classifier is
geometric mean which is not as expressive as a ROC curve
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and corresponds to just one point on it. Related to the
above, the SHRINK system of Kubat et al [13] classified the
overlapping reasons of both majority and minority classes
as positive, leading to a ”best positive region” classification.

Another study on under-sampling of dataset was per-
formed by Japkowicz et al [14]. In her study, she explored
different sampling techniques on artificial 1D data for better
evaluation of concept complexity. Her exploration involved
under-sampling as well as resampling of data. Both strate-
gies involved two different methods, viz. random and fo-
cused. Random resampling used samples from minor class
to be sampled randomly until they matched major class
samples, while focused resampling used only the boundary
points between minor and major class. In random under-
sampling, the samples from majority class were removed
randomly to match the minority class samples, in contrast
to focused under-sampling which under sampled majority
class samples lying further away. Her study revealed the
efficacy of both the sampling techniques but did not provide
any clear advantage in the domain considered.

While under sampling approach works, other works
uses under-sampling of majority class samples along with
over-sampling of minority class samples for learning a
better classifier. Ling and Li et al [15] uses lift analysis
to measure classifier’s performance in the domain of mar-
keting analysis problem. They ranked the test examples
by confidence measures and used lift as the evaluation
criteria. In one of the experiments they performed, they
under sampled the majority class and observed that the best
lift index is obtained when there is equal representation of
the classes. In another experiment, they over-sampled the
minority samples with replacement to match the negative
samples but could not prove the same as significant. The
work present in this paper is similar in strategy, but the over-
sampling techniques is different. Another work which uses
the idea of under-sampling as well as over-sampling of data
to overcome class imbalance problem is Solberg and Solberg
et al [16] . They use SAR imagery dataset obtained for clas-
sification of oil slicks which is heavily biased towards look-
alike data compared to oil slicks (98%-2%). They created a
new dataset by over-sampling the oil slicks data randomly
and under-sampling the look-alike data to create equal class
distribution. As a result, on learning a classification tree
on the balanced dataset they obtained better error rates on
both classes compared to training on imbalanced dataset.
Domingos et al [17] also take the same approach to deal
with class imbalance by introducing a ”metacost” term to
under-sampling as well as over-sampling. The work shows
the metacost improves over either, and proves that under-
sampling of majority class does better than over-sampling
of minority class.

Other researchers (DeRouin et al [18]) tried to use the
same on feed-forward neural networks which is not able
to learn to discriminate between classes sufficiently due
to the same class imbalance problem. The learning rate
of the neural network was adapted according to the class
distribution in the data set. Experimenting over artificial as
well as real-world training data with multi-class problem
provided better classification accuracy for minority class. In
information retrieval domain, document classification is one
of the challenging problems which is affected by this class

Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)

TABLE 1
Confusion Matrix

imbalance. Creating a simple bag-of-words model results
in interesting words samples as a minority due to very
limited instances of such words in the document. Thus, in
IR domain, the performance metric is replaced from error
rates and instead, precision and recall terms are used for
performance measurements.

recall =
TP

TP + FN

precision =
TP

TP + FP

We will see what we mean by the terms True Positive (TP),
False Positive (FP) and False Negative (FN) in the next
section. In the same domain, Mladenic and Grobelnik [19]
proposed a feature subset selection approach to deal with
class imbalance. They found out that using odd ratio along
with Naive Bayes classifier performs best in the domain.
Odds ratio incorporates target class information giving bet-
ter result over information gain which is computed per
word for each class. In [20], Provost and Fawcett introduced
the ROC convex hull method for performance evaluation
of the classifier in which ROC space is used to separate
classification performance from class and cost distribution.

3 EVALUATION CRITERIA AND PERFORMANCE
METRICS

Confusion matrix, shown in Table 1, is one of the most
common method in machine learning used to evaluate per-
formance of a (2-class) classification problem for imbalanced
class datasets. As shown in the table, the columns are
predicted class and the rows are actual class. Over a dataset
of finite samples, the count of correctly classified negative
samples is termed as True Negative (TN), while the count
of incorrectly classified negative samples is termed as False
Positive (FP). Similarly, the count of incorrectly classified
positive sample is termed as False Negative (FN), while the
count of correctly classified positive sample is termed as
True Positive (TP).

Fig. 1. Example of an ROC Curve
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For any classification task, predictive accuracy is defined
as the total number of correctly classified samples over total
number of samples. Mathematically, it is given by,

Accuracy =
TP + TN

TN + FP + FN + TP

In machine learning, we evaluate the performance of a
classifier by its error rate which is given by,

ErrorRate = 1−Accuracy

This performance measure works well for balanced class
data sets, but for imbalanced datasets a much wider used
metric is the Receiver Operating Characteristics (ROC)
curves.

A typically ROC curve is a plot of percentage True
Positive vs percentage False Positive. One such curve is
shown in Figure 1. We have %ge FP on the X-axis given
by,

%ge FP =
FP

TN + FP

and %ge TP on the Y-axis given by,

%ge TP =
TP

TP + FN

As evident from the definition, the ideal point on the
curve will be (0, 100), signifying that all positive examples
are classified correctly while no negative samples are mis-
classified as positive. The Area Under the Curve (AUC) can
be taken as a good metric for comparing different classifiers,
but these can be suboptimal for some specific cost and class
distributions. Thus, the convex hull of ROC curve, being
potentially optimal, is also taken as one of the performance
metrics.

4 IMPLEMENTATION

In this section we provide the details of the various ap-
proaches we implemented from the paper. Using the “mam-
mography” dataset [3], we show the effectiveness of SMOTE
in this class imbalanced scenario. The dataset consist of
11,183 samples of which 10,923 are negative samples while
we have only 260 positive samples. The dataset has 6
attributes, while we learn the classifier on 2 attributes, by
decomposing the dataset using PCA, for better visualiza-
tion. In Figure 2, we show the decision boundaries in the
feature space, created by classifying 10% of the total data
containing 18 positive samples and 1,100 negative samples.
We have used the classifiers implemented in Scikit Learn
library [2] with codes written in Python 2.7.1. The codes
and dataset are provided in the supplementary material.

4.1 Over-sampling with replacement
Learning a classifier on the imabalanced class data gives us
a biased classification towards the majority class samples
(red circles). From Figure 2a, we observe that the classi-
fication decision boundary using the original data is not
very accurate. Many minority class samples (blue circles)
are classified under majority class (red region) resulting
in decrease in true positive rate. The decision boundary
is more general and spread away from minority (positive)
class samples too.

(a) Case I (b) Case II

(c) Case III

Fig. 2. Comparison of classification using Decision Trees on (a) Original
dataset (b) Minority Over-sampling with replacement dataset, and (c)
Over-sampling using SMOTE 500% dataset.

One of the earliest ways suggested by researchers to
overcome this issue is over-sampling the minority class sam-
ples, in order to reduce the bias towards the majority class.
We implement the over-sampling approach by duplicating
the minority class samples. The degree of over-sampling
in our implementation is 500%, i.e. if the dataset had 18
positive class samples and 1,100 negative class samples, as is
the case in Figure 2, we upsample the positive class sample
to 90. As a result, we see the decision boundary for minority
class samples (blue region) shrink to enclose each individual
positive sample. In other words, the data starts overfitting
towards the positive class samples as more and more leaf
nodes are added to the decision tree leading to very specific
decision boundaries in the feature space. We see the same
happening in Figure 2b with the 6 positive samples in the
region around (0, 5).

4.2 SMOTE

Over-sampling of minority samples provides better accu-
racy but increases the complexity of classifier learnt mani-
folds. Moreover, the results does not generalize well as the
decision region become very specific to the few minority
samples present in the feature space leading to increase
in false negatives. To overcome these issues a new over-
sampling technique is proposed which augments the minor-
ity class samples by adding “synthetic” data. The algorithm
works in the feature space of minority data samples. For
a given degree of over-sampling rate, say 200%, the algo-
rithm finds k-nearest neighbors of a minority sample and
generates 2 random points on the line joining any 2 of the
k-nearest neighbors found. We use nearest neighbors class
implementation from scikit-learn library to find the nearest
neighbor of each data point in the minority feature space.
Algorithm 1 gives the steps to generate “SMOTED” data.

Figure 2c compares the effect of over-sampled data using
SMOTE by 500%, with original data (Figure 2a) and replaced
data (Figure 2b). It is clear from the plot that synthetic data
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obtained using SMOTE helps classifier to generalize well
over minority samples by providing better synthetic data to
overcome the class imbalance. The decision region becomes
larger and less specific as is the case with over-sampling by
replacement, at the same time reducing mis-classification by
creating better decision boundary which is seen in the case
of classification using original data.

4.3 SMOTE with under-sampling
Over-sampling minority class samples with the help of
SMOTE helps in increasing the percentage of minority sam-
ples, but still doesn’t help overcoming the effect of grossly
skewed data perfectly. To overcome this bias towards ma-
jority class sample, we under-sample the majority samples
in addition to SMOTing the dataset. The under-sampling is
done to a degree with respect to the number of minority
class samples. We first SMOTE the dataset and obtain the
final number of minority class samples and then under-
sample the majority class sample to get the desired degree
of under-sampling. For example, in the above example,
we have 18 minority samples and 1,100 majority samples.
SMOTing the dataset by 500% results in an increase in
minority samples to 90. Now, under-sampling the dataset
by a degree of 200% means drawing out half the samples of
minority class samples, at random, from the total majority class
samples, i.e using 45 samples from the 1,100 majority (neg-
ative) class samples along with the 90 minority (positive)
class samples to train the classifier.

Data: #Minority Samples T; Degree of SMOTE N%;
#nearest neighbor k

Result: synthetic[][] := (N/100)*T synthetic minority
samples

initialization:= original[][]; nIdx=0; nAttr;
if N < 100 then

T = (N/100) * T;
N = 100;

end
N = (int) (N/100);
for i := 1 to T do

nnArray := compute k nearest neighbor;
while N != 0 do

nn := random(1, k);
for attr := 1 to nAttr do

dif = original[nnArray[nn]][attr] -
sample[i][attr];

gap = random(0, 1);
synthetic[nIdx][attr] = sample[i][attr] +
gap*dif;

end
nIdx++;
N-=1;

end
end

Algorithm 1: Steps to perform over-sampling using
SMOTE to generate synthetic minority data

5 EXPERIMENTS

We experiment with our implementation of plain under-
sampling and under-sampling with SMOTE under varying

Datasets #Minority (+ve) Class #Majority (-ve) Class
Mammography 260 10,923

SatImage 626 5,809
Pima Indian 268 500

TABLE 2
Class Distribution in Datasets Used

degrees of under-sampling and SMOTE combinations. Our
aim is to tackle the class imbalance problems in datasets,
thus, we test the algorithm on 3 different dataset with
different class distributions. We use Decision Trees, Naive
Bayes and k-NN classifiers with varying under-sampling
and SMOTE degrees to (i) analyze the effectiveness of
SMOTing data, and (ii) compare the classifiers learning the
best decision boundaries. We plot the ROC curves and use
ROC Convex Hull (ROCCH) and Area Under the Curve
(AUC) as our metrics to draw our conclusions.

5.1 Datasets

The 3 dataset we use are Mammography Dataset [3], Pima
Indian dataset [4] and SatImage dataset [5]. The class dis-
tribution of the datasets are provided in Table 2. We have
provided the codes to convert raw data file into comma
separated file format (CSV), which is the input dataset file
format in our implementation and experiments code, in the
supplementary material.

Each datasets are multi-dimensional, with mammogra-
phy dataset consisting 6 attributes, Pima Indian having
8 attributes and SatImage datasets having 36 attributes.
Wherever needed, we reduce the dimensionality of dataset
using PCA for preserving maximum information, faster
computation and visualization of decision boundary in 2-
D feature space.

5.2 Classifiers

Our main classifier for testing the algorithm implementation
is Decision Trees. In the paper, the authors use C4.5 variant
of Decision Trees to test the classification quality. We have
used the implementation of Decision Trees provided by
scikit-learn library, which is an optimized version of C4.5
algorithm called Classification and Regression Trees (CART)
algorithm. As stated in the documentation [6], “CART is
very similar to C4.5, but it differs in that it supports numer-
ical target and does not compute rule sets. CART constructs
binary trees using the feature and threshold that yield the
largest information gain at each node.”

(a) Plot I (b) Plot II

Fig. 3. ROC Curve plots for Mammography dataset.
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Datasets Under SMOTE 100 SMOTE 200 SMOTE 300 SMOTE 400 SMOTE 500
Mammography 0.7220 0.7290 0.7776 0.7919 0.7918 0.7752

SatImage 0.7866 0.7881 0.8259 0.8318 0.8380 0.8283
Pima Indian 0.6581 0.6567 0.7014 0.7145 0.7207 0.7327

TABLE 3
AUC of the ROC Curve for plain under-sampling and varying degree of minority over-sampling using SMOTE (100%, 200%, 300%, 400% & 500%)

In addition to decision tree classifiers, we compare the
performance of the same algorithms on Naive Bayes classi-
fier with varying minority class priors. The paper also uses
Ripper classifier to compare the performance, but we failed
to locate any existing implementation of Ripper classifier
in a 3rd party library in Python. Instead we use k-Nearest
Neighbor classifier with a fixed value of k for comparison
with Decision Tree classifier, and varying values of k for
comparison amongst k-NN classifiers. Our change in classi-
fier is guided by the intuition that the algorithm augments
data in the feature space, and since k-NN classification
works directly in the feature space, it should provide a
better classification accuracy. The value of k in all k-NN a
implementation is 5 for all our experiments.

5.3 ROC Curves and Cross-Validation

In order to evaluate the performance we plot the Receiver
Operating Characteristics (ROC) curves for varying param-
eters of classification. ROC curves are essentially a plot of
False Positive Rate (FPR) on x-axis vs True Positive Rate
(TPR) on y-axis which measures a classifier’s performance
in more detail than a simple accuracy measure. This granu-
larity is of great use in a class imbalance scenario because it
gives an idea about the degree of mis-classification in both
positive as well as negative class. Ideally, we will like a low
False Positive Rate and a high True Positive Rate, resulting
in a shift in ROC curve towards the (0, 100) point. As the
curve goes nearer to this point, the classification gets better.

In our experiments we draw two plots for each dataset.
The first plot contains Decision Tree as the base classifier
and we compare the Decision Tree implementation of plain
under-sampling of majority class samples at rates varying
from 10% to 2000% as described in Section 4.3. For plain
under-sampling we do not SMOTE the dataset before under-
sampling. We compare the ROC curve obtained by plain
under-sampling with that obtained by under-sampling with
SMOTE. To obtain the second ROC curve, we over-sample
the dataset with varying degrees from 100% to 500%, based
on the dataset class distributions. In the same plot we com-
pare Decision Tree classifier with Naive Bayes classifier, by

(a) Plot I (b) Plot II

Fig. 4. ROC Curve plots for Pima Indians dataset.

adding another ROC curve plotted using classification from
Naive Bayes with varying class priors of minority class. In
the implementation provided by scikit-learn, the class priors
are automatically calculated as the frequency of each class
samples, as stated in the documentation [7]. Thus, we feed
in the data used in plain under-sampling to NB classifier
as it varies the ratio between the two class samples. The
various class priors used to plot the curve vary for different
dataset based on the class distribution ratio of the dataset.
We report the class priors at the end, after performing
each experiment. In the second plot we replace decision
tree classifier with k-NN classifier as the base classifier. We
provide a comparison of the classifier with respect to plain
under-sampled data and under-sampled data with SMOTE
as with previous case.

Each point on the ROC curve is obtained by classifying
the training data using a 10-fold cross validation . In an
n-fold cross validation, each dataset is divided into n equal
parts randomly, and (n-1) of those parts are use for training
while 1 left-out part is used for validation to improve the
classifier parameters. This process is iteratively performed
n times and classification metric is generated with each
prediction. The points are the mean False Positive Rate vs
mean True Positive Rate for the 10 different classification
with a particular configuration of over-sampling/ under-
sampling combination. We followed the ROC curve imple-
mentation with cross-validation of scikit-learn library [8],
with modification to plot curves as we needed for our
particular experiments. Figure 3, 4 and 5 provides the ROC
curves we plot with comparison on all 3 datasets and the 3
classifiers we use. The average time taken to plot the ROC
curves for Mammography dataset is 91.9 secs, for SatImage
dataset is 297.3 secs and for Pima Indians dataset is 68.5
secs.

5.4 Convex Hull and AUC

The performance of the ROC curve is quantified using
ROC Convex Hull and AUC metric. Convex Hull gives the
boundary of a potential optimal classifier in comparison
of multiple ROC curves. ROC Curves themselves may not

(a) Plot I (b) Plot II

Fig. 5. ROC Curve plots for SatImage dataset.
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be optimal at every instance. Thus, we use the hull to
find out when a given classifier/method is optimal and
when it can be replaced. We have implemented convex
hull in all our plots, which should be taken as the perfect
classification ROC curve. We construct the hull by first
creating an array of all the 2D points on the ROC Curves
using all classifier/method combination. Then we call the
ConvexHull implementation of Scipy library [9] provided
in scipy.spatial class, which essentially uses the QuickHull
algorithm of [10] [11]. This breaks the decision space into
multiple simplices of the convex hull and finally we draw
each individual simplex to complete the convex hull of the
curves.

Area Under-the-Curve (AUC) is another metric which
we use to evaluate the performance of each classification.
In simple terms, the more the value of AUC, the better the
classification as the curve will be nearer to the ideal point (0,
100) to maximize the area. We again use the implementation
provided in scikit-learn library to calculate the AUC for
each ROC curve. We summarize the average AUC values
obtained from 10 runs of the experiment in Table 3. The
average time taken to calculate the AUC for Mammography
dataset is 17.4 secs, for SatImage dataset is 88.8 secs and for
Pima Indians dataset is 17.2 secs.

6 DISCUSSIONS

In Figure 3a, 4a and 5a , we plot the results obtained by
SMOTE based minority oversampling with majority under-
sampling technique, previous techniques of plain major-
ity under-sampling learnt on Decision Trees and changing
minority class priors in Naive Bayes. For mammography
dataset, we observe that we obtain optimal results at 400%
SMOTE oversampling with varying under-sampling degree.
With SMOTE, we obtained better results than Naive Bayes
or plain under-sampling which is evident from the con-
vex hull, as most of the points from SMOTE lie on the
convex hull. For Pima Indians dataset, we observe that
both Naive Bayes with different minority class priors and
SMOTE works equally well where each lies partially on
the convex hull but even though SMOTE is better because
more points on the convex hull comes from SMOTE than
Naive Bayes. For SatImage Dataset, Naive Bayes performs
better than SMOTE which can be attributed to the higher
number of attributes in SatImage. In all the datasets, we
observe SMOTE with under-sampling performs way better
than plain under-sampling with Decision Trees.

Next in Figure 3b, 4b and 5b, we use nearest neighbor
classifier with the same SMOTE with under-sampling and
plain under-sampling. Here, we observe that for all three
datasets, SMOTE based classifier performed better than
plain under-sampling which is in line with our previos
results with different classifiers. Most of the points on the
convex hull comes from SMOTEd dataset which proves
SMOTE classification with SMOTE is most optimal.

Last, we compare Area Under Curve for different degree
of SMOTE i.e. 100%, 200%, 300%, 400% and 500% for all
the three datasets with plain under-sampling on mammog-
raphy dataset trained with Decision Tree classifier. We again
observe that SMOTE perform better than under-sampling
though at different degrees of minority oversampling. As we

can observe from the values, for mammography SMOTing
at 300% is the best, for SatImage SMOTing at 400% is
best while for Pima Indians SMOTing at 500% is best with
maximum area under their respective ROC curves.

These results confirm our intuition that SMOTE with
under-sampling perform much better than plain under-
sampling. This can be attributed to the fact since we are
increasing the minority class samples, the training set has
more data to learn better classifier with better class distri-
butions. Again, this over-sampling method is better than
replacement because new data points are generated in the
feature space, which will again help the classifier generalize
well over the dataset. While we can not argue that aug-
menting the data with SMOTE helps, the degree of SMOTE
remains a variable in the implementation. If we specify
a lower degree the number of synthetic samples created
do not boost the minority class ratio much while if we
use very high degree, the high number of minority class
sample will start over-fitting the data similar to what we
see in over-sampling with replacement. Thus, finding the
degree based on the original class distributions such that
SMOTing negates the effect of dis-proportionate distribution
on learning classifier is a challenge with this approach.

7 CONCLUSION & FUTURE SCOPE

Through this project, we have studied the problem of class
imbalance in dataset. We reviewed techniques to overcome
this challenge, and went one step ahead by implementing
one of the popular techniques used to overcome this prob-
lem, SMOTE. We compared our implementation of synthetic
over-sampling with over-sampling with replacement and
showed that the classifier learnt by our method is more
general. Through our experiments, we show that while
SMOTE with under-sampling works best for specific clas-
sifiers like decision trees and nearest neighbor, comparing
classifiers’ performance, naive bayes with varying minority
class samples can also be used for better classification. While
convex hull of ROC curves show that SMOTE is optimal for
classification, AUC shows that varying degree of SMOTE
helps in improving the classifier further.

Thus, as future works that should be a natural exten-
sion of this algorithm is to automatically find the degree
of SMOTE to be used for augmenting the minority class
sample. The degree should be neither high nor low as at low
degrees the algorithm will not be affective, while at higher
degree will lead to generation of data specific to training set.
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