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1 Problem Specification

The homework is to explore surface interrogation with the help of various kinds
of curvatures. According to Patrikalakis and Maekawa1, “Interrogation is the
process of extraction of information from a geometric model.” There are numer-
ous ways to extract information from a geometric models. We will be trying
to do the same using surface curvatures. These come under the second-order
interrogation methods as classified by1. The task is to use the Gaussian, Mean,
RMS and Absolute curvatures2 3 4 5 for surface interrogation.

After the homework, we should be able to tell the effectiveness of each cur-
vatures in evaluating the shapes. We should be able to have an idea about
which kind of curvature is best suited for which kind of surfaces. Thus, we need
to explore the strengths and weaknesses of each curvature measures, specific to
various kind of surfaces.

2 Curvatures

Before getting into the nuances of shape interrogation using curvatures, let us
know what do we mean by curvatures. A curvature is a generic term used
to describe the difference in properties of an geometric object compared to a
standard set of objects which are considered to be flat6. It comprises of various
measurable characteristic which can be used to tell two objects apart, in our case
a curved surface from a plane. Let us understand the curvature for a surface in
detail.

2.1 Surface Curvature

If we take a two-dimensional surface in a 3-dimensional space, and draw a one-
dimensional curve on it, we can measure the curvatures of the curve using various
curvature measures. The three main types of curvature that we can see in
literature are the normal curvature(κn), geodesic curvature(κg) and geodesic
torsion. Given any point on a surface, there will be a tangent vector T on that
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Figure 1: Curvature on a Surface

point defined by the surface. This tangent vector will lie on a tangent plane of
the surface orthogonal to the normal vector as shown in Figure 1.

The curvature of the curve projected on the plane containing the curve, the
tangent vector and the normal vector is known as the normal curvature(κn) of
the surface at that point7. The plane containing the vector is termed as the
normal plane. The geodesic curvature(κg) is defined as the curvature of the
curve projected on the tangent plane.

If we rotate the normal plane about the normal at the given point, we ob-
tain different value of curvatures, depending on the shape of the surface. The
minimum(κmin/κ1) and the maximum(κmax/κ2) value of normal curvature on
a surface is termed as the principal curvature of the surface. These principal
curvatures are the eigen values of the differential of the Gauss map (∂N).

2.2 Gaussian Curvature

The Gaussian curvature of a surface at any point is simple the product of their
principle curvatures8 found using the normal curvature at the point on the
surface.

κgauss(K) = κmax ∗ κmin

In context of Gaussian curvature, it maybe useful to know three types of
surface and how related to the Gaussian curvature, viz. Developable surface,
sphere, and pseudospherical surface.

A developable surface has constant zero Gaussian curvature value and the
geometry of the surface is in euclidean space. The surfaces having a constant
positive Gaussian curvature is a sphere and follows spherical geometry. If the
surface has a constant negative Gaussian curvature, then it is a pseudospherical
surface and follows the hyperbolic geometry.

It is very interesting to relate the sign of the Gaussian curvature with the
principal curvatures as developable surface will always have zero principal cur-
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vature values, sphere will have a constant positive value for both the principal
curvature and a psuedospherical shape will have a positive maximum principal
curvature while a negative minimum principal curvature for the overall Gaussian
curvature to be negative.

Figure 2: Gaussian Curvature

2.3 Mean Curvature

Using the principal curvatures obtained bu the normal curvature(κn), the mean
curvature9 of a surface at that given point is defined as,

κmean(H) =
1

2
(κmax + κmin)

A surface having zero mean curvature is known as a minimal surface. Catenoid10,
Helicoid11 and Enneper surface12 are some classical minimal surfaces.

Figure 3: Costa’s minimal surface, an example of zero mean curvature

2.4 RMS Curvature

The RMS or root mean square curvature is defined in terms of the prinicpal
curvature as follows,

κrms =
√
κ2max + κ2min
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According to Maekawa5, an absolute curvature is suitable for calculating
the curvature of surfaces for meshing applications. But the absolute curvature
is not a differentiable function. Hence, RMS curvatures are defined, which is
differentiable and fairly useful for meshing purpose.

2.5 Absolute Curvature

The absolute curvature4 is defined as,

κabs = |κmax|+ |κmin|

3 Surfaces and Shapes Used

In our experiments we have used various surfaces. There are essentially two
types of exploration we have done in our experiments. The first part comprises
of the surfaces whose geometry is well defined and has been studied extensively
in the literature. These comprises of the basic shapes of a cylinder(Figure 4a),
sphere(Figure 4b) and a torus(Figure 4c). For each of these shape curvature
plots are made and compared with the standard results. These serve the purpose
to check whether our method of implementation of these surface curvature are
correct or not by comparing them with the standard results found in literature.

The second part comprises of the actual exploration. We create 7 parametric
surface, each having a distinct shape and unique properties of their own. For
ease of naming them, we have named them according to the curvature values of
the curve, viz. generic graph(Figure 5a), positive upward curve(Figure 5b), pos-
itive downward curve(Figure 5c), negative curve(Figure 5d), zero curve(Figure
5e), monkey saddle(Figure 5f) and a modified four point saddle surface(Figure
5g). Having no idea how these surfaces will behave to different curvature mea-
sures, it was interesting to notice their behaviour and study them.

(a) Cylindrical Surface

(b) Spherical Surface

(c) Torus

Figure 4: Different Surfaces for Shape Interrogation: Part I
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(a) Generic Graph
(b) Upward Positive Cur-
vature Surface

(c) Downward Positive
Curvature Surface

(d) Negative Curvature
Surface

(e) Zero Curvature Sur-
face

(f) Monkey Saddle

(g) Degenerate Four-
Point Saddle

Figure 5: Different Surfaces for Shape Interrogation: Part II
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4 Implementation

We can find the curvature of a surface using differential geometry on the surface.
In Section 2, we saw how to find the Gaussian, Mean, RMS and Absolute
curvatures with the help of Normal curvature. This is one way of calculating
the curvatures. However, in this homework, we have used the First and Second
fundamental forms to describe the surfaces and then define the shape shifters
which are essentially used to calculate the Gaussian and Mean curvatures. Then
we find the principal curvatures in terms of Gaussian and Mean curvatures using
which we define the RMS and Absolute curvatures as described in Section 2.4
and 2.5.

The calculation of fundamental forms of a surface requires the calculation of
partials in direction of the basis vectors.

The first fundamental form for any surface is given as G from the equation,

∂l2 = ∂uTG∂u

where G is given by

G =

[
< x1, x1 > < x1, x2 >
< x2, x1 > < x2, x2 >

]
We define, E =< x1, x1 >,F =< x1, x2 >=< x2, x1 > andG =< x2, x2 >,

then first fundamental form for a surface is given by,

G(I) = eg − f2

For the calculation fo second fundamental form, we take second derivative
of the surface parameters along the basis vectors. The second fundamental is
given by B where B is defined as,

B =< S(v), w >= wTBw

where S(v) are the Weingarten Shape operators. Here v is the parametrization
coordinate. In terms of euclidean coordinates B is given as

B =

[
< S(x1), x1 > < S(x1), x2 >
< S(x2), x1 > < S(x2), x2 >

]
= −

[
< ∂Nu1, x1 > < ∂Nu1, x2 >
< ∂Nu2, x1 > < ∂Nu2, x2 >

]
We define, e =< ∂Nu1, x1 >, f =< ∂Nu1, x2 >=< ∂Nu2, x1 > andg =<

∂Nu2, x2 >, then second fundamental form for a surface is given by,

B(II) = EG− F 2

In our experiments, we first calculate the partials for a surface, given a set
of parameters. We then evaluate the partials and the curvatures for a range of
values for the surface and then plot the values on the surface using a color map
whose range is defined by the principal curvatures.
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The Gaussian curvature in terms of the shape operators is given by,

K = det(∂N) =
eg − f2

EG− F 2
=
B

G
=
IIndfundamentalform

Istfundamentalform

The Mean curvature in terms of the shape operators is given by,

H =
1

2

eG− 2fF − gE
EG− F 2

The principal curvatures in terms of the Gaussian Curvature (K) and Mean
Curvature (H) are given by,

Kmax = H +
√
H2 −K

Kmin = H −
√
H2 −K

The RMS and Absolute Curvatures are given by the equation,

κrms =
√
K2

max +K2
min

and
κabs = |Kmax|+ |Kmin|

In the notebook we define functions to calculate all the partials and curva-
tures, and then plot the surfaces using ParametricPlot3D function defined in
Mathematica, passing the parametric equation to the function and adding the
temperature color map normalized to the range of principal curvatures and a
legend to the properties of the plot.

5 Observations

The Curvature values and their respective minimum and maximum values for
part I is given in the Table 1 and for part II is given in Table 2

The plots for each curve with their temperature color map as observed along
with legends are as shown.

For Part 1, on the cylindrical surface, all four curvatures were calculated.
The plots are given in Figure 6. For the spherical and torus curves, the Gaussian,
Mean and absolute curves were calculated and they are shown in the Figure 7
and Figure 8 respectively.

For Part 2, on the generic graph, positive upward curve and positive down-
ward curve the RMS value were not calculated. The plots are given in Figure 9,
Figure 10 and Figure11 respectively. For all other surfaces, all four curvatures
were calculated and they are shown in the Figure 12, Figure 13, 14, Figure 15.

7



Shapes Gaussian Mean
κ1 κ2 K κ1 κ2 H

Cylinder 0 0 0 0.5 0.5 0.5
Sphere 1 1 1 −1.336x10−16 1.116x10−16 −0.11x10−16

Torus 0.0085 0.0133 1.1305x10−4 0.067 0.079 0.073

Shapes RMS Absolute
κ1 κ2 κRMS κ1 κ2 κAbs

Cylinder 1 1
√

2 1 1 2
Sphere - - - 2 2 4
Torus - - - 0.184 0.231 0.415

Table 1: Part I - Evaluating Curvatures on known Surfaces

Shapes Gaussian Mean
κmin κmax κmin κmax

Generic Graph 0.095 5.361 -0.894 0.679
Positive Upward Curve 0.049 4 -0.385 0.385

Positive Downward Curve 0.049 4 -0.385 0.385
Negative Curve -4 -0.049 0.370 2

Zero Curve 0 0 -1 -0.089
Monkey Saddle -3.897 -0.053 0.405 1.997

Four-Point Saddle -5.241 -0.061 0 2.396

Shapes RMS Absolute
κmin κmax κmin κmax

Generic Graph - - 0.616 4.63
Positive Upward Curve - - 0.444 4

Positive Downward Curve - - 0.444 4
Negative Curve 0.805 4.899 0.864 5.657

Zero Curve 0.179 2 0.179 2
Monkey Saddle 0.944 4.871 1.045 5.614

Four-Point Saddle 0 5.768 2.317x10−18 6.609

Table 2: Part II - Evaluating Curvatures on unknown Surfaces
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(a) Gaussian and Mean Curvature
(b) Absolute and RMS Curvature

Figure 6: Curvature plots for Cylindrical surface
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Figure 7: Curvature plots for Spherical surface
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(a) Gaussian Curvature for Torus

(b) Mean Curvature for Torus

(c) Absolute Curvature for Torus

Figure 8: Curvature plots for Torus surface
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(a) Gaussian Curvature for Generic Graph

(b) Mean Curvature for Generic Graph

(c) Absolute Curvature for Generic Graph

Figure 9: Curvature plots for Generic Graph
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(a) Gaussian Curvature for Upward Posi-
tive Curvature Surface

(b) Mean Curvature for Upward Positive
Curvature Surface

(c) Absolute Curvature for Upward Posi-
tive Curvature Surface

Figure 10: Curvature plots for Upward Positive Curvature Surface
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(a) Gaussian Curvature for Downward Pos-
itive Curvature Surface

(b) Mean Curvature for Downward Positive
Curvature Surface

(c) Absolute Curvature for Downward Pos-
itive Curvature Surface

Figure 11: Curvature plots for Downward Positive Curvature Surface
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(a) Gaussian Curvature for Negative
Curvature Surface

(b) Mean Curvature for Negative Cur-
vature Surface

(c) Absolute Curvature for Negative
Curvature Surface

(d) RMS Curvature for Negative Cur-
vature Surface

Figure 12: Curvature plots for Negative Curvature Surface

(a) Gaussian Curvature for Zero Cur-
vature Surface

(b) Mean Curvature for Zero Curva-
ture Surface

(c) Absolute Curvature for Zero Cur-
vature Surface

(d) RMS Curvature for Zero Curvature
Surface

Figure 13: Curvature plots for Zero Curvature Surface
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(a) Gaussian Curvature for Degenerate
Monkey Saddle

(b) Mean Curvature for Degenerate
Monkey Saddle

(c) Absolute Curvature for Degenerate
Monkey Saddle

(d) RMS Curvature for Degenerate
Monkey Saddle

Figure 14: Curvature plots for Degenerate Monkey Saddle Surface

(a) Gaussian Curvature for Degenerate
Four-Point Saddle

(b) Mean Curvature for Degenerate
Four-Point Saddle

(c) Absolute Curvature for Degenerate
Four-Point Saddle

(d) RMS Curvature for Degenerate
Four-Point Saddle

Figure 15: Curvature plots for Degenerate Four-Point Saddle Surface
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6 Conclusions

From the first part of the experiment, we can compare the results of the curva-
ture values with the standard results and see that they match.

The Gaussian curvature for cylinder is constant and zero. For sphere and
torus it is a positive constant value. Now for sphere it is a positive constant
of 1 which is confirmed by the maximum and minimum curvature values both
corresponding to 1. For torus, we do see a positive value, but its not a large
value and the variation in min-max is also of only 0.0048 which is low. Hence,
we can assume it to be almost constant for the whole surface implying an even
distribution of curvature values which is true due to the symmetry element.

Also, the mean, RMS and the Absolute curvature of cylindrical is constant
which should be as it is a zero curvature surface or what we termed earlier
as a developable surface. We find the mean curvature of sphere and torus is
very low establishing its symmetrical shape. We were not able to calculate the
RMS curvature for sphere and torus because of some imaginary numbers being
introduced in the calculations, but we could calculate the absolute curvature
values and they are constant for sphere but with small variation for torus.
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