
Group 26 MLBenchmark: An Android Application to
Benchmark Machine Learning Algorithms

Ankush Kanungo
1211390203

Arizona State University
akanung1@asu.edu

Divyanshu Bandil
1211234762

Arizona State University
dbandil@asu.edu

Meha Shah
1211143970

Arizona State University
mshah17@asu.edu

Siddhant Prakash
1211092724

Arizona State University
sprakas9@asu.edu

ABSTRACT
UPDATED—January 8, 2018. Machine learning has become
very popular in recent years with its application being recog-
nized by the technology industry as a commodity. It finds
application in day-to-day activity from face recognition to un-
lock mobile phones to sentiment analysis of our daily tweets.
But machine learning on mobile devices suffers from the age
old challenges of resource constraint computing especially
because of its high computation cost. Thus, to aid users in
this domain we present a machine learning benchmarking
android application in this paper. The application uses a stan-
dard dataset to run experiments using four different machine
learning algorithm. We can train any of the four model on
a specified percentage of dataset provided and use the re-
maining percentage of data to test the performance of the
model on device. The training is offloaded to cloud AWS
server which implements a REST API. We report the perfor-
mance of the algorithms in a separate view as well as log
the outcomes of each experiment in a file stored on the ex-
ternal storage. The code for the project can be found here
https://github.com/dev-sidd-16/ML-Benchmark

Author Keywords
Android programming, Logistic Regression, Naive Bayes,
K-Nearest Neighbor, Support Vector Machine, Machine
Learning, Benchmarking, Classification, Cloud Computing

INTRODUCTION
In this paper we present an Android application for bench-
marking machine learning algorithms. MLBenchmark pro-
vides the user with four different machine learning algorithms.
A user can train these algorithm on a cloud server and test each
model on the device. The application comes with a dataset
pre-installed in it over which all the experiments are run. The
user can perform different experiments using our application
and store result of each experiment in a log file. This can
help the user to test the performance of their device towards
different ML algorithms as well as aid them to compare the
various machine learning algorithms out in the market. As a
result, the user can find out which algorithm works best for

a particular task as well as whether it is reasonable or even
feasible to use it on given device.

The high cost of computation of machine learning algorithms
as well as their hunger for resources is what calls for the
need of such an application. In a typical machine learning
experiment, we try to learn a model from large number of
data samples. To learn these models researchers have come up
with various different algorithms over the years. The learning
part of each of these experiment is to estimate the parameters
of the particular model we want to learn. Often times the
models involves complex calculations well beyond simple
addition and multiplication. Besides, the large amount of data
required by the algorithms for learning a good representation
of the data becomes a challenge in itself. Thus, the processing
large amount of complex calculations on resource constraint
environment such as a smartphone becomes very difficult.

In this work we try to get an estimate of the computational
power we have on today’s mobile devices. With advancement
in mobile systems, we have now huge computational power,
well beyond what we had even on desktop systems 10 years
back. With our experiments that we performed, we found
out that the algorithms do not do well when the training was
performed on device. This is attributed to the large amount
of data we need to train a model. Although, our dataset was
small with only 9 dimensions, the training time it took on few
hundred samples was in order of seconds. If we extrapolate
these results in comparison to large datasets with hundreds
of dimensions and millions of data points, it can be seen that
the device will take minutes or even hours to perform training
itself. Thus, we conclude that the device cannot be allowed to
do the training phase, which we implement on a cloud server.
Instead, we perform the testing phase on device and report it’s
performance as our result of the experiment, along with the
time it takes to train the model on the server.

The rest of the report is organized as follows. We briefly go
over the theory of machine learning algorithms we used in
the backgrounds section. Explaining the role of datasets and
classifiers in the experiments, we highlight how they increase
the complexity of the task to be performed. We also brief over

https://github.com/dev-sidd-16/ML-Benchmark

Figure 1: A standard machine learning classification pipeline.

the different performance metrics we report in our test view.
Then we move on to the application structure. In this section
we explain the different functionalities of our application and
the work of each views. We guide the user about how to use
our application and how one can perform multiple experiments
in a short span of time with our intuitive interface. Next we
go into the implementation details of our application. We
list all the different components that we used to build this
interactive application and provide an in-depth analysis of
the decisions made and challenges faced while building the
application. Finally, we conclude this report with a demo of
the project and briefly go over the future directions where this
application could be improved.

MACHINE LEARNING BACKGROUND
A supervised machine learning framework takes labelled data
as input and generates discrete output corresponding to each
data sample. A typical example is a classification task. In a
classification task, we classify each data sample into different
classes. We generally group classification task into two groups,
viz. 2-class classification and multi-class classification As the
name suggest, 2-class classification involves classifying the
data into 2 classes while we can have any number of classes
for multi-class problems. To demonstrate our use case, we
have selected a 2-class classification problem and built our
application over it.

We show the data flow in a standard machine learning classi-
fication system in Figure 1. The dataset is first divided into
a training and test set. Feature extraction is normally done
on raw training data to extract features for various purposes
like reducing dimensionality of dataset for faster computa-
tion. After extracting the features, a classifier is learnt on the
dataset using the training samples and the training label. After
each learning an error is calculated and using the error the pa-
rameters or "weights" of the model are updated to reduce the
training error. Thus, after the training is complete we have a
trained model which represents the data it has been trained on.
Now in the testing phase, the test data is fed into the system
and the model predicts a class for each of the data samples.
Each prediction results in a class output, which may or may
not be correct. The error incurred on the test dataset is called
test error.

The quality of training a good model depends on a number
of factors, of which the size of training set is a major one.
If we have less training data, the model will not be able to
learn the data representation correctly leading to learning of
too simplistic model, a phenomenon called "under-fitting".

On the other hand, if we train a model to learn too complex
a representation over the training set, we observe that the
training error keeps on decreasing, while the test error, initially
decreasing, starts increasing after attaining a saddle point. The
resultant phenomena is termed as "over-fitting". Thus we see
that having a large training data is desirable, but when it comes
to mobile phones, we need to take the resource constraints into
consideration too.

Now we will describe the dataset we used as well as give a
background on the classifiers we have implemented. We will
also discuss the performance metrics we have used to express
the performance of our test results in brief.

Dataset
We have used the “Breast Cancer Wisconsin (Original)
Data Set" from the UCI Machine Learning repository
[1][2][3][4]. The dataset consist of 699 data points in to-
tal. It is a 2-class category problem with class 1 “Benign"
consisting of 458 samples (65.5%) while class 2 “Malignant"
consisting of 241 samples (34.5%). The dataset consist of 10
attribute with the first one being the sample ID. We discard the
sample ID as an attribute since it does not really give us any
information about the data. Thus, we use a 9 attribute dataset
to learn our model for prediction 2 given class.

Classifiers
We have used four different classifiers in our application to
experiment on. We have used the classifier implementation
of "Weka Library" in our application. The four different algo-
rithms we have used are:

Logistic Regression
The logistic regression classifier uses the logistic (sigmoid)
function to build a model for classification. This is a probabilis-
tic approach which computes the probability of a data point
lying in a given class, p(y|x). The conditional distribution is a
Bernoulli given by,

p(y|x) = µ(x)y(1−µ(x))(1−y) (1)

where µ is the logistic function and is given by,

µ =
1

1+ e−wT x
(2)

The training of a logistic regression classifier involves esti-
mating the parameters w which will maximize the conditional
likelihood of the training data.

The final objective function is given by the following equation,

l(w) = argmaxw

N

∑
i=1

ln(P(xi|yi;w))

=
N

∑
i=1

(yi−1)wT xi−
N

∑
i=1

ln(1+ e−wT xi)

(3)

Thus, to train the model we learn the weights w by optimizing
the given objective function using the gradient ascent algo-
rithm.

Naive Bayes
Naive Bayes is another probabilistic approach in which we use
Bayes rule for computation of posterior probability P(Y |X)
to classify data based on the input X to one of the classes
given by Y [5]. The difference between Bayes and Naive
Bayes is the assumption of conditional independence which
states that, X is conditionally independent of Y given Z, if
the probability distribution governing X is independent of the
value of Y , given the value of Z. Mathematically, conditional
independence is expressed as given in Equation 4,

P(X = i|Y = j,Z = k) = P(X = i|Z = k) ∀(i, j,k)
(4)

Thus, in Naive Bayes classification, the interpretation of condi-
tional independence assumption is that each feature becomes
independent of the other given a class. Thus, the joint likeli-
hood of a feature given a class becomes,

P(X1, ...,X2|Y) = ΠiP(Xi|Y) (5)

So the decision rule for Naive Bayes becomes,

y∗ = argmaxyP(y)P(x1, ...,xn|y)
= argmaxyP(y)ΠiP(xi|y)

(6)

Training of naive bayes classifier involves the calculation of
class likelihood to find out the posterior probabilities for each
class. The testing phase predicts the outcome of each data
point by finding out the most likely class in which the data
should fall based on the class posterior probabilities.

k-Nearest Neighbor
k-NN is an instance based learning algorithm . Each data point
is represented as a vertex point on a graph and the edge weights
of the graph represents the similarity between the nodes. If
the weights are less, the nodes are more similar and vice versa.
For symmetric k-nearest neighbor, the graph is an unweighted
graph. In this algorithm we connect each vertex to its k-nearest
neighbors, i.e the k most similar data points in its vicinity are
grouped together. The similarity is calculated using a distance
function between two nodes. The lower the distance function,
the similar the nodes are. The most commonly used distance
function is L2-norm which is the default metric used in the
library implementation. We have used the same metric in our
implementation of the k-NN classifier.

Support Vector Machines
Support Vector Machine [6] is a supervised learning technique
in which the goal is to come up with a decision boundary to
classify all data points in the given classes. In the training
process the goal is to learn the decision boundary which will
minimize the error in classification of data points.

Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)

Table 1: Confusion Matrix

The algorithm works by estimating the support vectors, which
are the data points closest to the decision hyperplane, sepa-
rating the classes. The error is calculated by summing the
distance of the mis-classified examples from the decision hy-
perplane. Support vector machine finds hyperplane for clas-
sifying two classes. Thus, the algorithm works well for our
classification task.

The decision boundary in SVM is given by the equation,

wT x+b = 0 (7)

in which w and b are the parameters to be learnt. In SVM we
maximize the margin c for the classification task, between the
decision hyperplane and the support vectors. Thus, the joint
formulation can be defined as follows.

(wT xi +b)yi > c

The final maximum margin optimization for the classification
problem is given by the following equation.

maxw,b
c
||w||

s.t yi(wT xi +b)≥ c, ∀i
(8)

This is the Support Vector Machines objective, which we try to
solve using quadratic programming, and learn the weights w
and the bias b in the training phase. Thus the model becomes
the decision hyperplane given by equation 7.

Performance Metrics
Confusion matrix, shown in Table 1, is one of the methods in
machine learning used to evaluate performance of a (2-class)
classification problem. As shown in the table, the columns are
predicted class and the rows are actual class. Over a dataset
of finite samples, the count of correctly classified negative
samples is termed as True Negative (TN), while the count
of incorrectly classified negative samples is termed as False
Positive (FP). Similarly, the count of incorrectly classified
positive sample is termed as False Negative (FN), while the
count of correctly classified positive sample is termed as True
Positive (TP).

For any classification task, predictive accuracy is defined as the
total number of correctly classified samples over total number
of samples. Mathematically, it is given by,

Accuracy =
T P+T N

T N +FP+FN +T P
In machine learning, we evaluate the performance of a classi-
fier by its error rate which is given by,

ErrorRate = 1−Accuracy

We have reported the True Accept Rate (TAR), True Reject
Rate (TRR), False Accept Rate (FAR) and the False Reject
Rate (FRR) as our evaluation metric. These metrics are given
as follows,

TAR =
Correctly predicted positive

Total positive
=

T P
T P+FN

T RR =
Correctly predicted negative

Total negative
=

T N
T N +FP

FAR =
Incorrectly predicted positive

Total negative
=

FP
T N +FP

FRR =
Incorrectly predicted negative

Total positive
=

FN
T P+FN

We can see that,

TAR+FRR = 1

and,

T RR+FAR = 1

We also report the HTER metric which is given as,

HT ER =
FAR+FRR

2

The above metrics give an idea about the accuracy of predic-
tion which reflects how well the learnt model represent the
data distribution. In addition to these metrics we also report
the time taken by each algorithm for both training as well
as testing phase. Since the training is done over cloud, we
report the complete round trip time it takes for uploading the
training dataset as well as downloading the learnt model on
the uploaded dataset as our training time.

APPLICATION STRUCTURE
We have divided the application into 3 major sections, viz.
Main Screen, Cloud Interface and the Testing View. Here we
describe the basic UI to navigate through the application and
explain different component of each section.

Main Screen
The first screen that we get when we run the application is the
main screen. This is where we decide all our parameters for
running an experiment. As we can see in Figure 2c, the main
screen consists of many different views. Let us go through
each one sequentially from top.

The first view from the top is the data split percentage input.
This is the place where we need to specify the percentage
of data that should be used for training the classifiers. We
should note, that this is independent of the classifier we use.
Thus, it comes before selection of the classifiers. The values
that we can take should be in the range of 0.01 - 0.99 and must
be a floating point value. If we specify the value as 0.75, this
means that 75% of the total samples in the dataset will go for

the training and the rest 25% will be used for testing. The
default value for this parameter is 0.5.

Next we have the classifier selection drop down menu. It
is a straight-forward drop down menu with which we can
select either of the 4 algorithms that we have implemented,
viz. Logistic Regression, Naive Bayes Classifier, k-Nearest
Neighbor and Support Vector Machines. The default algorithm
selected at the start of the application is Logistic Regression.
Next is the create dataset split button, which splits the dataset
into training set and testing set. When the button is clicked
it creates and stores the training set and testing set files on
the external storage. The files are retrieved when we need to
perform the respective tasks as we will see later.

The above views, i.e. the data split percentage and the
classifier selection are mandatory to specify for any exper-
iments. Once we specify the data, we need to click on the
create dataset split button to ensure that our training file and
testing file is correctly split. To conduct and experiment, these
two values must be input. Although they have default values
to handle cases when input is not given, the best performance
with correct result will be achieved when these two parameters
are specified.

The parameters of the classifiers comes next. We have spec-
ified a cross-validation parameter which is true for all clas-
sifiers. Cross-Validation is basically an integer number. We
have performed n-fold cross validation in our training and the
number specified here is the n for the cross-validation. If we
select k-Nearest neighbor classifier, we can see a new parame-
ter will become visible .Here we specify the number of nearest
neighbor that should be considered for k-NN classification.
Similarly, if we select Support Vector Machines, we will be
able to see another parameter. This time it is a drop down
menu which takes the kernel to be used for SVM classifica-
tion as input. The option of kernels currently available in
our application are linear, polynomial (degree=2), polynomial
(degree=3) and radial basis function (RBF) kernels. The de-
fault value of these parameters are 5 for cross-validation, 5 for
number of nearest neighbor and linear kernel for SVM.

We also have a training model available view which specifies
whether a trained model is already available in the memory
with the specific configuration that we have specified. The
authors will like to point out here that we have specified each
experiment run as with a fresh start by deleting the previous
models trained. Thus, the view shows “Yes" only after we
train a model and it is available for the application to start the
testing phase. We have a radio button which when selected,
performs multi-threaded on-device training. This is a feature
we have been trying to implement and more details can be
found about it in the future works section.

Next we come across the two most important button of the
main view. The “Start Train" button when clicked starts the
training phase for the application. Assuming multi-thread pro-
cessing is unchecked and we are training on cloud, on clicking
the train button the training file that was created on splitting
the dataset will be sent to the cloud server for training. The
cloud server will train the model as specified in the parameters

and send back the model file generated. The application will
download the trained model and store it in the external storage
directory. Now the application is ready for testing. On clicking
“Start Testing", the application loads the testing file and the
model generated and evaluates the model over the test set. Be-
fore evaluating the application check for the availability of the
particular model file asked for with the specified parameters.
If the file is not present it returns a error message to the user
that the model file is not present and the user should train the
model before testing. Thus, if the test button is clicked before
the train button, the application handles the case automatically.

Cloud Interface
On the server side, we have implemented the RESTful Web
service by using Spring Boot in combination with Spring Web
MVC. RESTful web services works best on the Web. In the
REST architecture, data and functionality are considered to be
the resources which can be accessed using Uniform Resource
Identifiers (URIs) which links on the client side. The resources
are acted upon by using a set of simple, well-defined opera-
tions. The REST architecture is the basis of the client/server
architecture and is designed to use a stateless communica-
tion protocol, HTTP in our case where the client and server
exchange resources by using a standardized interface and pro-
tocol.

The following principles encourage RESTful applications to
be simple, lightweight, and fast:

• Resource identification through URI: A RESTful web ser-
vice exposes a set of resources identified by URIs that iden-
tify the targets of the interaction with its clients.

• Uniform interface: Resources are manipulated using a fixed
set of four create, read, update, delete operations - PUT,
GET, POST, and DELETE. PUT creates a new resource,
which can be then deleted by using DELETE. GET retrieves
the current state of a resource in some representation. POST
transfers a new state onto a resource.

• Self-descriptive messages: Resources are decoupled from
their representation so that their content can be accessed in
a variety of formats, such as HTML, XML, plain text, PDF,
JPEG, JSON, and others. We are using the JSON format in
our application.

• Stateful interactions through hyperlinks: Every interaction
with a resource is stateless; that is, request messages are
self-contained.

Secondly, we have used Amazon EC2 server to host our REST-
ful web service. Following reasons encouraged us to select
EC2 server for hosting our application:

1. Security: Data uploaded by the application user is our first
priority and the network architecture and data center built
by the Amazon EC2 team provides security-sensitive robust
networking functionality for our resource.

2. Scalability: Amazon EC2 also provides resizable compute
capacity in the cloud. Therefore, it is easy to train large size
big data sets on the server.

3. Reliability: Amazon EC2 offers a highly reliable environ-
ment where replacement instances can be rapidly and pre-
dictably commissioned.

4. Complete Control: We have complete access of the server
including the root access just like any local machine.

Testing View
The testing view is a simple view which reports the outcome
of a particular experiment. It consist of different section where
different performance metrics are reported. In the heading the
test view specifies the algorithm on which the experiment is
run. Next comes the split dataset percentage that has been used
for training the model of which the results is being shown.

Then we show the outcome of the experiments in a sequential
manner. First comes the performance metrics in the follow-
ing order: True Reject Rate, True Accept Rate, False Reject
Rate, False Accept Rate and HTER. Next we specify the time
elapsed in the training phase to generate and download the
model followed by the time elapsed for testing the data on
device.

The last two buttons are the navigation buttons from this screen.
The “Back" button will lead back to the main screen and the
current experiment run configuration will be cleaned. The
“View Logfile" button will take the user to the next view where
we can see the log file that is created after each experiment run.
We can see all the experiments performance measure in the
file and compare the run results as we please. We can navigate
back and forth between the test screen and the view log file
screen without loss of any data.

IMPLEMENTATION DETAILS
In this section we will go into our implementation details,
design choices and the reason behind the choices we made to
come up with this application.

General Android Settings
The application was implemented using Android Studio 2.3.3.
The minimum SDK version supporting the app is Android
17 and the target SDK version on which the app was built is
Android 26. We have tested the application on 3 Android
smartphone and 1 emulator, with the following configurations.

1. OnePlus 3T - Android 8.0.0 API26

2. Nexus 5 - Android 5.1.1 API22

3. Nexus 4 - Android 5.1.1 API22

4. Nexus 5 - Android 5.1.1 API22 - Emulator

Classifiers
We used “Weka Library" [7] for the implementation of the
classifiers. The version of weka we used is “weka-stable-
3.8.0". Although we obtained “weka-stable-3.8.1" library jar
file, we didn’t use it because we found the library was not
stable and gave us compilation issue when we tried it. We
used the library to implement both training on the server as
well as testing on device. We imported the library as a jar file
and added it to our project. The exact steps we followed to do
the same can be found here [8].

Now let us get into the application structure. Before building
the app we discussed and decided we will have two screens,
one for main activity where we will have all the parameters
and the other for showing the test result. The training part
was needed to be built on a cloud server and since one of our
team members had a Amazon Web Services account, we went
ahead with implementing an EC2 server on it. There was some
discussion over how to send the training parameters, and how
to input it. We would have liked to add different screens for
different classifiers because each one would have required a
different set of parameters. But finally we settled on a single
parameter screen, with all the parameters listed on the same.
That became our main activity screen.

Main Activity
We first implemented the application view in the “activ-
ity_main.xml" file. The dataset split input was created using
“EditText" widget. For the choice of classifiers we wanted to
add a drop down button. Thus, we used the “Spinner" widget
which lets us handle drop-down menu quite easily. The next
hurdle we faced was when to update the dataset split. Most of
the time when we input edit text, we change the value immedi-
ately by implementing a “setOnEditorActionListener". But we
wanted to give an exclusive button to specify when the dataset
is split and the split train and test dataset file is created. Thus,
next we added a button to include the above functionality.

The next step was to take the input split percentage and split
the data file. To do so, we first downloaded the dataset file from
the UCI repository ??. The next decision we needed to make
is how to access the dataset. We decided not to download
the dataset from the repository every time and include the
dataset as a resource with our application. Since, the dataset
we choose was roughly around 20KB, it was small enough
to be included with the application. Besides, we also needed
to convert the raw data file that we downloaded into ‘ARFF’
format file. We changed the dataset file accordingly and added
the file to our assets folder.

But we needed to store all other files in external storage since
the training, testing and model files could become very large.
So we have added the functionality that an application folder
will be created in “sdcard/Android/data/" with the name of
“MLBenchmark" and all the files will be stored in it. When
the “Split Dataset" button is clicked, the app checks if the
application folder exists or not. If it does not exists, ti creates
the folder and copies the dataset file from assets to the external
storage. Next, the “getDataFromResource" function is called,
which takes the split percentage as the input, creates and stores
the dataset split files in the application folder.

Next we added the views for the parameters with the cross-
validation parameter and k-nn parameter as edit text, while
the SVM kernels were implemented as a drop-down list. We
have added the functionality that only when the parameters
are required will they appear. For example, when we select
naive bayes or logistic regression classifier, we do not need
the k-NN and SVM parameters. Thus, we make all parameters
that are not required invisible by setting the visibility of the
corresponding view to “INVISIBLE". When the classifier

is selected, say SVM, the corresponding parameter’s view
becomes visible, in this case kernels.

We have also added a view to check if the model of the selected
classifier is present in the application folder location, it will
indicate “Yes" else it will indicate “No". Since we did not
want a new experiment to use the trained model of a previous
experiment we delete the previous model as soon as the new
model is selected from the drop-down menu if it exists. Thus,
the model available check returns true only after training is
performed and the model is downloaded.

Next we implemented the training and the testing buttons. On
clicking the training button we read the training file from the
application directory and upload it to the server. After we
receive OK from the server confirming the upload, we then hit
the server for training with the train parameters appended to
the end point. We have designed the end point of the server to
inform the server of the classifier as well as the parameters as
listed,

1. Logistic regression: “Server/LR_crossvalidationfolds"

2. Naive Bayes: “Server/NB_crossvalidationfolds"

3. k-NN Classifier: “Server/KNN_K_crossvalidationfolds"

4. SVM CLassifier: “Server/SVM_kernel_crossvalidationfolds"

where “Server/ : AWS_address:8080/".

Thus, the values are extracted on the server side, correspond-
ing training is done and the model file is sent as the output
of the hit request. Meanwhile, on the client side, the device
keeps checking if the file model file is sent back or not. Af-
ter, receiving the file, it stores in the application directory as
“<classifier>.model". This completes our training process on
the client side. The training implementation on the server side
is covered in the cloud interface implementation description
in the subsection.

Coming to the testing button, when we click it, the train and
test file is read from the application directory and loaded as
individual instances. The model is checked for availability
based on the classifier that is selected. Once the model file is
found, we load it and build the evaluation model on the training
instance. Finally we test the test instance on the evaluation
model built. Next we bundle all the parameters, viz., the
timestamp, experiment parameters, data split percentage and
the time elapsed in each phase along with the evaluation model
and send it to the testing view, attaching it to a new Intent as a
Serializable blob. Thus, this completes the test phase and we
are ready to view the result in the testing view.

Cloud Interface
The server side of the project is responsible to perform the
data processing task i.e. train the selected classification model
using training data and send back the trained model to the
client (android mobile phone).

We have divided the implementation of the cloud server into
three parts:

RESTful web service
The REST web service will typically connect the client and
server machines to exchange data resources and information
given by the application user needed to perform the model
training by using the HTTP protocol. The web service will
perform two main operations:

1. It will accept HTTP POST request from the client machine
to fetch the training data file generated on the client side
and as soon as the upload is complete, it will send a success
response (“File uploaded") back to the client machine.

2. It will accept the HTTP GET request from the client ma-
chine to fetch the type of classifier that the application user
wants to train on the fetched training data and sends back
the trained model file in response, to the client machine.

After extracting the training data set and the type of classifier,
the web service will send the information to the training class
file.

Classification Model Training
We have implemented our four classification models, Logistic
Regression, Naive Bayes Classifier, k-Nearest Neighbor and
Support Vector Machines on the server side.

To implement these algorithms, we have used the machine
learning libraries provided by the WEKA suite. These libraries
will take the ‘.arff’ training file as the input, train the respective
machine learning algorithm on the input data file and creates
the ‘.model’ file in the output. We can use this file directly on
the test data to predict the data classes.

Cloud server setup
We have used Amazon EC2 server to host the web service. To
setup the server we performed the following steps:

1. Sign Up for AWS: We created the AWS account.

2. Create IAM user: We created the IAM users (for the team
members) in the AWS account and added them to the IAM
group with administrative permissions. By performing this
step, we can access AWS using a special URL and the
credentials for the IAM user.

3. Create a key-pair: AWS uses public-key cryptography to
secure the login information for our instance. A Linux
instance uses a key pair to log in to the instance securely.
We specify the name of the key pair during the instance
launch and then provide the private key while logging in to
the instance using SSH.

4. Add security groups: Security groups act as a firewall for the
EC2 server instance controlling both inbound and outbound
traffic at the instance level. We added the rules to a security
group that enable us to connect to our instance from any IP
address using SSH. We can also added rules that allowed
inbound and outbound HTTP and HTTPS access from any
device.

Testing View
In the testing view, we report all the performance metrics and
the time elapsed for a particular experiment. We deserialize all

the bundle parameters we get from the Main Activity. Based
on the values that we get we create respective variables for
the same. Since we receive tested evaluation model of the
experiment, we need to extract out each metric from it. We do
so using the listed functions from “weka.evaluation" class.

1. True Reject rate: eval.trueNegativeRate(0)

2. True Accept rate: eval.truePositiveRate(0)

3. False Reject rate: eval.falseNegativeRate(0)

4. False Accept rate: eval.falsePositiveRate(0)

The parameter ‘0’ is the class label for the positive class. We
multiply the number by 100 and report the percentage on the
screen using TextView widget.

Log File View
We have implemented a scroll view activity to read the log file
and display it on the application.

CONCLUSION & FUTURE WORK
The primary goal of this project is to introduce an ongoing
work for benchmarking Machine Learning algorithms. We
have exhibited a comprehensive analysis of the performance
of various standard Machine Learning algorithms for the data
set given by the user, which may be used as a baseline for
evaluating and comparing newly developed Machine Learning
algorithms. Moreover, our project will also help in assessing
the diversity of existing benchmark datasets to identify short-
comings to be addressed by the subsequent addition of further
benchmarks in a future release.

For the future work, we have identified that the domain of
the Machine Learning benchmarking tool should be expanded
further by providing more number of machine learning algo-
rithms for the comparison. Also, we are planning to provide
individual application screen with respect to each Machine
Learning algorithm where user can also customize the selected
Machine Learning algorithm by giving different values of the
internal parameters like maximum number of passes over the
data, shuffle type, type of activation function for neural net-
works, learning rate, etc used in training the model. Lastly, we
are also planning to make our application on GPU so that we
can save the cost of external servers and perform the training
on the mobile itself.

We expect this future work to lead to a more comprehensive
benchmark application that will guide the users in discovering
the strengths and weaknesses of various Machine Learning
algorithms by giving them the honest comparisons and faster
results. The task list and division of tasks amongst the group
members are listed in Table 2.

ACKNOWLEDGMENTS
We would like to thank Professor Ayan Banerjee and the TA
Junghyo Lee for providing their valuable guidance. We appre-
ciate their considerate efforts which helped us in completing
the project successfully.

(a) Main Screen (b) Test Screen

(c) Log Screen

Figure 2: The different screens in MLBenchmark Applica-
tion. (a)The main screen that we see at the start of application.
We can specify the parameters for experiments on this screen.
(b)The test screen we get after the testing is completed. The
test results are shown along with the run configuration of the
experiment. (c) The log screen where logs of all the experi-
ments performed can be viewed.

REFERENCES
1. O. L. Mangasarian and W. H. Wolberg: "Cancer

diagnosis via linear programming", SIAM News, Volume
23, Number 5, September 1990, pp 1 & 18.

2. William H. Wolberg and O.L. Mangasarian:
"Multisurface method of pattern separation for medical
diagnosis applied to breast cytology", Proceedings of the
National Academy of Sciences, U.S.A., Volume 87,
December 1990, pp 9193-9196.

3. O. L. Mangasarian, R. Setiono, and W.H. Wolberg:
"Pattern recognition via linear programming: Theory and
application to medical diagnosis", in: "Large-scale
numerical optimization", Thomas F. Coleman and Yuying
Li, editors, SIAM Publications, Philadelphia 1990, pp
22-30.

4. K. P. Bennett & O. L. Mangasarian: "Robust linear
programming discrimination of two linearly inseparable
sets", Optimization Methods and Software 1, 1992, 23-34
(Gordon Breach Science Publishers).

5. “Naive Bayes classifier." Wikipedia: The Free
Encyclopedia. Wikimedia Foundation, Inc. 7 December
2017.

Table 2: Task Lists; Ankush Kanungo: AK; Divyanshu Bandil:
DB; Meha Shah: MS; Siddhant Prakash: SP

S.
No

Activities Name

1 Weka Integration on Server side DB
2 Server-side implementation of Machine

Learning Algorithms
DB

3 Server-side coding for Handling System pa-
rameters for different models/algorithms

DB

4 Serializing the parameters of trained model
into a file

DB

5 Sending the serialized model file to device DB
6 Deployment on AWS server AK
7 Preprocessing of breast cancer dataset and

create file in ARFF format
AK

8 Weka integration on Android required for
training/testing

AK

9 UI enhancement for enabling parameters
only specific to a model and disable all
other irrelevant parameters not specific to
that model

AK

10 Random splitting of input dataset into train-
ing/testing dataset

AK

11 Read ARFF training file using weka SP
12 Upload the ARFF train file to server from

device
SP

13 Send system parameters for different mod-
els to server

SP

14 UI development for different models (SVM,
KNN, Logistic Regression, NaÃŕve Bayes)

SP

15 Receive the serialized model file (trained
model) from the server on device

SP

16 DE serialize the model file and read it using
weka

MS

17 Display the tested results in a separate ac-
tivity for that model

MS

18 Create Log file for saving the testing results MS
19 UI development for different models (SVM,

Logistic Regression, NaÃŕve Bayes, KNN)
MS

20 Video preparation for demonstrating the ap-
plication

MS

6. “Support Vector Machine." Wikipedia: The Free
Encyclopedia. Wikimedia Foundation, Inc. 7 December
2017.

7. Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The
WEKA Workbench. Online Appendix for "Data Mining:

Practical Machine Learning Tools and Techniques",
Morgan Kaufmann, Fourth Edition, 2016.

8. “How to add external libraries to Android Project in
Android Studio?". http://o7planning.org/en/10525/
how-to-add-external-libraries-to-android-project-in-android-studio

http://o7planning.org/en/10525/how-to-add-external-libraries-to-android-project-in-android-studio
http://o7planning.org/en/10525/how-to-add-external-libraries-to-android-project-in-android-studio

	Introduction
	Machine Learning Background
	Dataset
	Classifiers
	Logistic Regression
	Naive Bayes
	k-Nearest Neighbor
	Support Vector Machines

	Performance Metrics

	Application Structure
	Main Screen
	Cloud Interface
	Testing View

	Implementation Details
	General Android Settings
	Classifiers

	Main Activity
	Cloud Interface
	RESTful web service
	Classification Model Training
	Cloud server setup

	Testing View
	Log File View

	Conclusion & Future Work
	Acknowledgments
	References

